Why Is Sensor Size Important: Part 1.

workshops-275 Why Is Sensor Size Important: Part 1.


Over the next few posts I’m going to look at why sensor size is important. In most situations larger camera sensors will out perform small sensors. Now that is an over simplified statement as there are many things that effect sensor performance, including continuing improvements in the technologies used, but if you take two current day sensors of similar resolution and one is larger than the other, the larger one will usually outperform the smaller one. Not only will the sensors themselves perform differently but other factors come in to play such as lens design and resolution, diffraction limiting and depth of field, I’ll look at those in subsequent posts, for today I’m just going to look at the actual sensor itself.

Pixel Size:

Pixel size is everything. If you have two sensors with 1920×1080 pixels and one is a 1/3? sensor and the other is a 1/2? sensor then the pixels themselves on the larger 1/2? sensor will be bigger. Bigger pixels will almost always perform better than smaller pixels. Why? Think of a pixel as a bucket that captures photons of light. If you relate that to a bucket that captures water, consider what happens if you put two buckets out in the rain. A large bucket with a large opening will capture more rain than a small bucket.

pixels Why Is Sensor Size Important: Part 1.
Small pixels capture less light each

Bigger pixels capture more light each.

It’s the same with the pixels on a CMOS or CCD sensor, the larger the pixel, the more light it will capture, so the more sensitive it will be. Taking that analogy a step further if the buckets are both of the same depth the large bucket will be able to hold more water before it overflows. It’s the same with pixels, a big pixel can store more charge of electrons before it overflows (photons of light get converted into electrical charge within the pixel). This increases the dynamic range of the sensor as a large pixel will be able to hold a bigger charge before overflowing than a small pixel.

Noise:

All the electronics within a sensor generate electrical noise. In a sensor with big pixels which is capturing more photons of light per pixel than a smaller sensor, the ratio of light captured to electrical noise is better, so the noise is less visible in the final image, in addition the heat generated in a sensor will increase the amount of unwanted noise. A big sensor will dissipate any heat better than a small sensor, so once again the big sensor will normally have a further noise advantage.

So as you can see, in most cases a large sensor has several electronic advantages over a smaller one. In the next post I will look at some of the optical advantages.

Advertisements

Leave a Reply

Your email address will not be published. Required fields are marked *

*