What is Dual Base ISO and why is it important?

Almost all modern day video and electronic stills cameras have the ability to change the brightness of the images they record. The most common way to achieve this is through the addition of gain or through the amplification of the signal that comes from the sensor. 

On older video cameras this amplification was expressed as dB (decibels) of gain. A brightness change of 6dB is the same as one stop of exposure or a doubling of the ISO rating. But you must understand that adding gain to raise the ISO rating of a camera is very different to actually changing the sensitivity of a camera.

The problem with increasing the amplification or adding gain to the sensor output is that when you raise the gain you increase the level of the entire signal that comes from the sensor. So, as well as increasing the levels of the desirable parts of the image, making it brighter, the extra gain also increases the amplitude of the noise, making that brighter too.

Imagine you are listening to an FM radio. The signal starts to get a bit scratchy, so in order to hear the music better you turn up the volume (increasing the gain). The music will get louder, but so too will the scratchy noise, so you may still struggle to hear the music. Changing the ISO rating of an electronic camera by adding gain is little different. When you raise the gain the picture does get brighter but the increase in noise means that the darkest things that can be seen by the camera remain hidden in the noise which has also increased in amplitude.

Another issue with adding gain to make the image brighter is that you will also normally reduce the dynamic range that you can record.

Screenshot-2019-11-27-at-18.21.19-1024x576 What is Dual Base ISO and why is it important?

This is because amplification makes the entire signal bigger. So bright highlights that may be recordable within the recording range of the camera at 0dB or the native ISO may be exceed the upper range of the recording format when even only a small amount of gain is added, limiting the high end.

Screenshot-2019-11-27-at-18.22.59-1024x576 What is Dual Base ISO and why is it important?
Adding gain amplifies the brighter parts of the image so they can now exceed the cameras recording range.

 

At the same time the increased noise floor masks any additional shadow information so there is little if any increase in the shadow range.

Reducing the gain doesn’t really help either as now the brightest parts of the image from the sensor are not amplified sufficiently to reach the cameras full output. Very often the recordings from a camera with -3dB or -6dB  of gain will never reach 100%.

Screenshot-2019-11-27-at-18.23.08-1024x576 What is Dual Base ISO and why is it important?
Negative gain may also reduce the cameras dynamic range.



A camera with dual base ISO’s works differently.

Instead of adding gain to increase the sensitivity of the camera a camera with a dual base ISO sensor will operate the sensor in two different sensitivity modes. This will allow you to shoot at the low sensitivity mode when you have plenty of light, avoiding the need to add lots of ND filters when you want to obtain a shallow depth of field. Then when you are short of light you can switch the camera to it’s high sensitivity mode.

300x250_xdcam_150dpi What is Dual Base ISO and why is it important?

When done correctly, a dual ISO camera will have the same dynamic range and colour performance in both the high and low ISO modes and only a very small difference in noise between the two.

How dual sensitivity with no loss of dynamic range is achieved is often kept very secret by the camera and sensor manufacturers. Getting good, reliable and solid information is hard. Various patents describe different methods. Based on my own research this is a simplified description of how I believe Sony achieve two completely different sensitivity ranges on both the Venice and FX9 cameras.

The image below represents a single microscopic pixel from a CMOS video sensor. There will be millions of these on a modern sensor. Light from the camera lens passes first through a micro lens and colour filter at the top of the pixel structure. From there the light hits a part of the pixel called a photodiode. The photodiode converts the photons of light into electrons of electricity. 

Screenshot-2019-11-27-at-17.40.52-1024x605 What is Dual Base ISO and why is it important?
Layout of a sensor pixel including the image well.

In order to measure the pixel output we have to store the electrons for the duration of the shutter period. The part of the pixel used to store the electrons is called the “image well” (in an electrical circuit diagram the image well would be represented as a capacitor and is often simply the capacitance of the the photodiode itself).

Screenshot-2019-11-27-at-17.41.00-1024x605 What is Dual Base ISO and why is it important?
The pixels image well starts to fill up and the signal output level increases.

Then as more and more light hits the pixel, the photodiode produces more electrons. These pass into the image well and the signal increases. Once we reach the end of the shutter opening period the signal in the image well is read out, empty representing black and full representing very bright.

Screenshot-2019-11-27-at-17.41.09-1024x605 What is Dual Base ISO and why is it important?

Consider what would happen if the image well, instead of being a single charge storage area was actually two charge storage areas and there is a way to select whether we use the combined image well storage areas or just one part of the image well.

Screenshot-2019-11-27-at-18.10.02-1024x575 What is Dual Base ISO and why is it important?
Dual ISO pixel where the size of the image well can be altered.

When both areas are connected to the pixel the combined capacity is large. So it will take more electrons to fill it up, so more light is needed to produce the increased amount of electrons. This is the low sensitivity mode. 

If part of the charge storage area is disconnected and all of the photodiodes output is directed into the remaining, now smaller storage area then it will fill up faster, producing a bigger signal more quickly. This is the high sensitivity mode.

What about noise?

In the low sensitivity mode with the bigger storage area any unwanted noise generated by the photodiode will be more diluted by the greater volume of electrons, so noise will be low. When the size of the storage area or image well is reduced the noise from the photodiode will be less diluted so the noise will be a little bit higher. But overall the noise will be much less that that which would be seen if a large amount of extra gain was added.

Note for the more technical amongst you: Strictly speaking the image well starts full. Electrons have a negative charge so as more electrons are added the signal in the image well is reduced until maximum brightness output is achieved when the image well is empty!!

As well as what I have illustrated above there may be other things going on such as changes to the amplifiers that boost the pixels output before it is passed to the converters that convert the pixel output from an analog signal to a digital one. But hopefully this will help explain why dual base ISO is very different to the conventional gain changes used to give electronic cameras a wide range of different ISO rating.

On the Sony Venice and the PXW-FX9 there is only a very small difference between the noise levels when you switch from the low base ISO to the high one. This means that you can pick and choose between either base sensitivity level depending on the type of scene you are shooting without having to worry about the image becoming unusable due to noise.

NOTE: This article is my own work and was prepared without any input from Sony. I believe that the dual ISO process illustrated above is at the core of how Sony achieve two different base sensitivities on the Venice and FX9 cameras. However I can not categorically guarantee this to be correct.

460x150_xdcam_150dpi What is Dual Base ISO and why is it important?

6 thoughts on “What is Dual Base ISO and why is it important?”

  1. I love this post, the detailed technical functionality of modern photo sensors is fascinating to me. My first video camera had a Saticon tube with a striped filter. My second was a BVW 1A 3-tube camera docked to a Betacam 3A deck (as best to my memory). We have come such a long way, but slowly. My FX9 will be here 12-28, I will appreciate dual ISO much more now.

  2. Hi Alister,

    I’ve been wondering for a long time about how current digital sensors are able to shoot anamorphic images when there are a finite number of pixels and photo sites / photodiodes. Do you think this idea of splitting the well is how image squeezing is possible on CMOS sensors? Excuse me if I have grossly misunderstood something and this is a stupid question

    1. The anamorphic process is an entirely optical process and has little to do with the sensor. It is the lens that does the image squeeze.

  3. I’d love to read an update on what cameras are getting this better tech if there are any – I’ve never read about this distinction before and it does not appear in the spec usually. Any current understanding would be greatly appreciated…

    1. Very few cameras have dual base ISO which is why you don’t see it mentioned very often. But when they do have it, it is normally included in the specs and literature.

Leave a Reply to alisterchapman Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.