Ultimate Guide for Cine EI on the Sony PXW-FS7

Ultimate Guide to CineEI on the PXW-FS7

 

INTRODUCTION:

This guide to Cine-EI is based on my own experience with the Sony PXW-FS7. There are other methods of using LUT’s and CineEI. The method I describe below, to the best of my knowledge, follows standard industry practice for working with a camera that uses EI gain and LUT’s.

If you find the guide useful, please consider buying me a beer or a coffee. It took quite a while to prepare this guide and writing can be thirsty work.

If you find the guide useful, please consider buying me a beer or a coffee. It took quite a while to prepare this guide and writing can be thirsty work.


Type



You can also download the guide here as a PDF: Ultimate Guide to CineEI on the PXW-FS7

Through this guide I hope to help you get the very best from the Cine EI mode. The camera has two very distinct shooting mode, Cine EI and Custom Mode. In custom mode the camera behaves much like any other traditional video camera where what you see in the viewfinder is what’s recorded on the cards. In custom mode you can change many of the cameras settings such as gamma, matrix, sharpness etc to create the look you are after in-camera. “Baking-in” the look of your image in camera is great for content that will go direct to air or for fast turn around productions. But a baked-in look can be difficult to alter in post production. In addition it is very hard to squeeze every last drop of the picture information that the sensor can capture in to the recordings in this mode.

The other mode, Cine-EI, is primarily designed to allow you to record as much information about the scene as possible. The footage from the camera becoming, in effect a “digital negative” that can then be developed in post production and the final, highly polished look of the film or video created. In addition the Cine-EI mode mimics the way a film camera works giving the cinematographer the ability to rate the camera at different ISO’s to those specified by Sony. This can be used to alter the noise levels in the footage or to help deal with difficult lighting situations.

One further “non-standard” way to use Cine-EI is to use a LUT (Look Up Table) to create an in-camera look that can be baked in to the footage while you shoot. This offers an alternative to custom mode. Some users will find it easier to create a specific look for the camera using a LUT than they would by adjusting camera settings such as gamma and matrix.

MLUT’s and LOOK’s (both are types of Look Up Tables) are only available in the Cine-EI mode.


 

THE SIMPLIFIED VERSION:

Before I go through all the “why’” and “hows” first of all let me just say that actually, CineEI is easy. I’ve gone in to a lot of extra detail here so that you can fully master the mode and the concepts behind it.

But in it’s simplest form, all you need to do is to turn on the MLUT’s. Choose the MLUT that you like the look of, or is closest to the final look you are after. Expose so that the picture in the viewfinder or on your monitor looks how you want and away you go.

Then in post production bring in your Slog footage. Apply the same LUT as you used when you shot and the footage will look as shot. However as the underlying footage is either raw or Slog you have a huge range of adjustment available to you in post if you decide you want to adjust the look of the footage.

THAT’S IT! If you want, it’s that simple (well almost).

If you want to get fancy you can create your own LUT and that’s really easy too (see the end of the document). If you want less noise in your pictures use a lower EI. I shoot using 800EI on my FS7 almost all the time.

Got an issue with a very bright scene and strong highlights, shoot with a high EI.

Again, it’s really simple.

But anyway, lets learn all about it and why it works the way it works.


 

LATITUDE AND SENSITIVITY.

The latitude and sensitivity of the PXW-FS7, like most cameras is primarily governed by the latitude and sensitivity of the sensor. The latitude of the sensor in the FS7 is around 14 stops. Adding different amounts of conventional camera gain or using  different ISO’s does not alter the sensors actual sensitivity to light, only how much the signal from the sensor is amplified. This is like turning up or down the volume on a radio, the sound level gets higher or lower, but the strength of the radio signal is just the same. Turn it up loud and not only does the music get louder but also any hiss or noise, the ratio of signal to noise does not change, so BOTH the noise and the music get louder. Turn it up too loud and it will distort. If you don’t turn it up loud enough, you can’t hear it, but the radio signal itself does not change. It’s the same with a video cameras sensor. It always has the same sensitivity, With a conventional camera, or in the FS7’s Custom Mode we can add or take away gain (volume control?) to make the pictures brighter or darker (louder?) but the noise levels will go up and down too.

NATIVE ISO:

Sony’s native ISO rating for the FS7 of 2000ISO has been chosen by Sony to give a good trade off between sensitivity, noise and over/under exposure latitude. In general the native ISO will give excellent results. But there may be situations where you want or need different performance. For example you might prefer to trade off a little bit of over exposure headroom for a better signal to noise ratio, giving a cleaner, lower noise picture. Or you might need a very large amount of over exposure headroom to deal with a scene with lots of bright highlights.

The Cine EI mode allows you to change the effective ISO rating of the camera, without altering the dynamic range.

With film stocks the film manufacturer will determine the sensitivity of the film and give it an Exposure Index which is normally the equivalent of the films measured ASA/ISO.  It is possible for a skilled cinematographer to rate the film stock with a higher or lower ISO than the manufacturers rating to vary the look or compensate for filters and other factors. You then adjust the film developing and processing to give a correctly exposed looking image. This is a common tool used by cinematographers to modify the look of the film, but the film stock itself does not actually change it’s base sensitivity, it’s still the same film stock with the same base ASA/ISO.

Sony’s Cine EI mode and the EI modes on Red and Alexa are very similar. While it has many similarities to adding conventional video camera gain, the outcome and effect can be quite different. If you have not used it before it can be a little confusing, but once you understand the way it works it is very useful and a great way to shoot. Again, remember that the actual sensitivity of the sensor itself never changes.


CONVENTIONAL VIDEO CAMERA GAIN.

Increasing conventional camera gain will reduce the cameras dynamic range as something that is recorded at maximum brightness (109%) at the native ISO or 0db would be pushed up above the peak recording level and into and we can’t record a signal larger than 109%. But as the true sensitivity of the sensor does not change, the darkest object the camera can actually detect remains the same. Dark objects may appear a bit brighter, but there is still a limit to how dark an object the camera can actually see and this is governed by the sensors noise floor and signal to noise ratio (how much noise there is in the image coming from the sensor).

Any very dark picture information will be hidden in the sensors noise. Adding gain will bring up both the noise and darkest picture information, so anything hidden in the noise at the native ISO (or 0db) will still be hidden in the noise at a higher gain or ISO as both the noise and small signal are amplified by the same amount.

Using negative gain or going lower than the native ISO may also reduce the dynamic range as picture information very close to black will be shifted down below black when you subtract gain or lower the ISO. At the same time there is a limit to how much light the sensor can deal with before the sensor itself overloads. So even though reducing the ISO or gain may make the picture darker, the sensors clipping/overload point remains the same, so there is no change to the upper dynamic range, just a reduction in recording level. The net result is you loose shadow information, don’t gain any highlight information, this means a reduction in dynamic range.

See also this article on gain and dynamic range.

As Sony’s Slog2 and Slog3 are tailored to capture the cameras full 14 stop range this means that when shooting with Slog2 or Slog3 the gamma curve will ONLY work as designed and deliver the maximum dynamic range when the camera is at it’s native ISO. At any other recording ISO or gain level the dynamic range will be reduced. IE: If you were to use SLog2 or SLog3 with the camera in custom mode and not use the native ISO by adding gain or changing the ISO away from 2000, you will not get the full 14 stop range that the camera is capable of delivering.


 

EXPOSURE LEVELS FOR DIFFERENT GAMMA CURVES AND CONTRAST RANGES.

 

It’s important to understand that different gamma curves with different contrast ranges will require different exposure levels. The TV system that we use today is currently based around a standard known as Rec-709. This standard specifies the contrast range that a TV set or monitor can show and which recording levels represent which display brightness levels. Most traditional TV cameras are also based on this standard. Rec-709 does have some serious restrictions, the brightness and contrast range is very limited as these standards are based around TV standards and technologies developed 50 years ago. To get around this issue most TV cameras use methods such as a “knee” to compress together some of the brighter part of the scene in to a very small recording range.

A traditional TV camera with a limited dynamic range compresses only a small highlight range.

 

A traditional TV camera with a limited dynamic range compresses only a small highlight range.

A traditional TV camera with a limited dynamic range compresses only a small highlight range.

As you can see in the illustration above only a very small part of the recording “bucket” is used to hold a moderately large compressed highlight range. In addition a typical TV camera can’t capture all of the range in many scenes anyway. The most important parts of the scene, from black to white, is captured more or less “as is”. This leaves just a tiny bit of space above white to squeeze in a few highly compressed highlights. The black to white range represents about 5 stops, these are the most important stops as the majority of things that are important fall in this range. Faces, skin tones, plants, buildings etc all fall within the black to white range. Anything brighter than white must be a direct light source such as the sky, a reflection or lamp.

The signal from the TV camera is then passed directly to the TV and as the shadows, mid range and skin tones etc are all at more or less the same level as captured the bulk of scene looks OK on the TV/Monitor. Any highlights or other brighter than white direct light sources may look a little “electronic” due to the very large amount of compression used.

But what happens if we want to record more of the scenes range or compress the highlights less? As the size of the recording “bucket”, the codec etc, does not change, in order to capture a greater range and fit it in to the same space, we have to re-distribute how we record things.

Recording a greater dynamic range into the same sized bucket.

Recording a greater dynamic range into the same sized bucket.

Recording a greater dynamic range into the same sized bucket.

Above you can see instead of just compressing a small part of the highlights we are now capturing the full dynamic range of the scene. To do this we have altered the levels that everything is recorded at. Blacks and shadows are a little lower, greys and mids are a fair bit lower and white is a lot lower. By bringing all these levels down, we make room in our recording bucket for the highlights and the really bright stuff without them being excessively compressed.

The problem with this though is that when you output the picture to a monitor or TV it looks odd. It will lack contrast as the really bright stuff is displayed at the same brightness as the conventional 709 highlights. White is now only as bright as faces would be with a conventional TV camera and Faces are only a little bit above the middle grey level.

This is how S-Log works:

This is how Slog works. By re-distributing the recording levels we can squeeze a much bigger dynamic range into the same size recording bucket. But it won’t look quite right when viewed directly on a standard TV or monitor. It may look dark and certainly a bit washed out.

I hope you can also see from this that whenever the cameras gamma curve does not match that of the TV/Monitor, the picture might not look quite right. Even when correctly exposed, white may be at different levels, depending on the gamma being used, especially if the gamma curve has a greater range than the normal Rec-709 used in old school TV cameras.

 


 

THE CORRECT EXPOSURE LEVELS FOR SLOG-2 and SLOG-3.

Before we go any further lets just look at the correct exposure levels for SLog-2 and SLog-3. As these gamma curves have a very large dynamic range the recording levels that they use are different to the levels used by the normal 709 gamma curve used for conventional TV. As a result when correctly exposed, Slog looks dark and low contrast on a conventional monitor or in the viewfinder. The table below has the correct levels for middle grey (grey card) and 90% reflectance white (a white card) for the different types of Slog.

Correct exposure levels for Sony's Slog.

Correct exposure levels for Sony’s Slog.

Correct exposure levels for Sony’s Slog.

The white level in particular is a lot lower than we would normally use for TV gamma. This is done to give extra space above white to fit in the extended range that the camera is capable of capturing, all those bright highlights, bright sky and clouds and other things that cameras with a smaller dynamic range struggle to capture.

SETTING THE CORRECT EXPOSURE.

Let’s now take a look at how to set the correct starting point exposure for SLog-3. You can use a light meter if you wish, but if you do want to use a light meter I would first suggest you check the calibration of the light meter by using the grey card method below and comparing what the light meter tells you with the results you get with a grey or white card.

The most accurate method is to use a good quality grey card and a waveform display. For the screen shots seen here I used a Lastolite EzyBalance Calibration Card. This is a pop up grey card/white card that fits in a pocket but expands to about 30cm/1ft across giving a decent sized target. It has middle grey on one side and 90% reflectance white on the other. With the MLUT’s off, set the exposure so that the grey card is exposed at the appropriate level (see table above). I also recommend the use of a DSC Labs “One Shot” chart. The front of the chart has a series of color references that can be used in post production to set up your base color correction while the rear of the chart has both a large middle grey and 90% white square.

 

 

USING THE FS7’s WAVEFORM MONITOR OR ZEBRAS TO SET THE CORRECT BASE S-LOG3 EXPOSURE.

IMPORTANT NOTE: The waveform monitor. Histogram or Zebras measure the cameras LUT output. So if LUT’s are on, you are measuring the LUT, not the S-Log. To establish the base exposure setting for S-log3 we want to turn the LUT’s OFF so we are measuring the S-Log3 signal itself. I will cover how to how to work with LUT’s in the next section

Currently the way the waveform display operates in the CineEI mode on the FS7 is not ideal. You cannot use it in conjunction with LUT’s unless you have the LUT’s ON for all outputs, the VF and SD1/internal recording, or if you have ALL LUT’s options set to OFF. Normally when shooting S-Log you DON’T want to have the LUT’s enabled for the SD1/Internal Recordings as this means you are no longer recording S-Log but instead recording the LUT. Hopefully this situation will be rectified in a firmware update sometime in 2015. In addition sadly the cameras built in waveform display is not the best so it may help to use an external monitor with a better waveform display.

The internal waveform display settings are found in the menu under:

VF: Display On/Off: Video Signal Monitor.

Setting the correct exposure for Slog-3 using a grey card. Middle grey should be 41%

Setting the correct exposure for Slog-3 using a grey card. Middle grey should be 41%

Setting the correct exposure for Slog-3 using a grey card. Middle Grey should be 41%

If you don’t have access to a better waveform display you can use a 90% reflectance white card and zebras. By setting up the Zebras with a narrow aperture window of around 3% you can get a very accurate exposure assessment for various shades of white. For SLog-3 set the Zebras to 3% aperture and the level at 61%. Sadly the zebras don’t go below 60%. For Slog-2 using 60% will be accurate enough, a 1% error is not going to do any real harm. You can use exactly the same method for S-Log2 just by using the SLog-2 levels detailed in the chart above.

Setting up the Zebras to measure S-Log3 exposure of white card (90% reflectance white card).

Setting up the Zebras to measure S-Log3 exposure of white card (90% reflectance white card).

Setting up the Zebras to measure S-Log3 exposure of white card (90% reflectance white card).

Correct exposure for S-Log3 when using a 90% reflectance white target.

Correct exposure for S-Log3 when using a 90% reflectance white target.

Correct exposure for S-Log3 when using a 90% reflectance white target.

The image above shows the use of both the Zebras and Waveform to establish the correct exposure level for S-Log3 when using a 90% reflectance white card or similar target. Please note that very often a piece of white paper or a white card etc will be a little bit brighter than a calibrated 90% white card. If using typical bleached white printer paper I suggest you add around 4% to the white values in the above chart to prevent under exposure.


 

USING LUTS’s and CINE EI:

SO HOW DOES CINE-EI WORK?

Selecting Cine EI in base settings on the PXW-FS7

Selecting Cine EI in base settings on the PXW-FS7

Cine EI is selected in the Base Settings page. It works in YPbPr, RGB and Raw main operation modes.

Cine-EI (Exposure Index) works differently to conventional camera gain. It’s operation is similar in other cameras that use Cine-EI or EI gain such as the F5, F55, F3, F65, Red or Alexa. You enable Cine-EI mode in the camera menus Base Settings page. On the F5 and F55 it works in YPbPr, RGB and RAW modes.

IMPORTANT: In the Cine-EI mode the ISO of the recordings remains fixed at the cameras native ISO (unless baking in a LUT,  more on that later). By always recording at the cameras native ISO you will always have 14 stops of dynamic range.

YOU NEED TO USE A LUT:

You can only use LUT’s in the CineEI mode. In addition in order to be able to have LUT’s on for the Viewfinder, HDMI / SDI2, but NOT on the SD1 & Internal Rec you cannot set the HDMI to output 4K, you can only use HD or 2K.

PXW-FS7 output options.

PXW-FS7 output options.

So for most applications you will want to set your SDI and HDMI outputs to HD/2K in order to ba able to use the LUT system as designed for CineEI. For reference (2-3PD) means 2-3 pull down is added for 24p footage, so the output will be 60i with 24p footage sgown using pull down. PsF means progressive segmented frame which is the normal HDSDI standard for progressive output. Any of the HD or 2K output modes will allow the use of LUT’

 

Important: For Cine-EI mode to work as expected you should monitor your pictures in the viewfinder or via the SDI/HDMI output through one of the cameras built in MLUT’s (Look Up Table), LOOK’s or User3D LUT’s. So make sure you have the MLUT’s turned on. If you don’t have a LUT then it won’t work as expected because the EI gain is applied to the cameras LUT’s.  At this stage just set the MLUT’s to on for the Sub&HDMI output and the Viewfinder out.

 

PXW-FS7 Lut selection settings.

PXW-FS7 Lut selection settings.

The LUT’s are then turned on in the VIDEO: Monitor LUT: settings page of the menu. You will normally want to turn ON LUT’s for SDI2, HDMI and the VIEWFINDER (not seen in the image above, simply scroll down to the bottom of the page to see the VIEWFINDER option). For normal CinEI use you should leave SD1 & Internal Rec OFF as we don’t want to record the LUT, just monitor via the LUT.

EXPOSING VIA THE LUT/LOOK.

At the cameras native 2000 ISO, when viewing or monitoring via a LUT you should adjust your exposure so that the picture in the viewfinder looks correctly exposed. If the LUT is correctly exposed then so too will the S-log. As a point of reference, middle grey for Rec-709 and the 709(800) LUT should be at, or close to 42% and white will be around 85-90%. Skin tones and faces will be at the normal TV level of around 65-70%.

This is really quite simple, generally speaking when using a LUT, if it looks right in the viewfinder, it probably is right. However it is worth noting that different LUT’s may have slightly different optimum exposure levels. For example the 709(800) LUT is designed to be a very close match to the 709 gamma curve used in the majority of monitors, so this particular LUT is really simple to use because if the picture looks normal on the monitor then your exposure will also be normal. The included 709(800) LUT is the most accurate LUT for exposure as this matches the gamma used in the majority of monitors. This LUT produces a nice contrasty image that is easy to focus. It is not meant to be pretty! It is a tool to help you get accurate exposure simply and easily.

Correct exposure of Middle Grey for the 709(800) MLUT. Middle Grey should be 42%. 90% will be 90%.

Correct exposure of the 709(800) LUT using a 90% white card, white will be 90%. You can use zebras at 90% to check this level.

Correct exposure of Middle Grey for the 709(800) MLUT. Middle Grey should be 42%. 90% will be 90%.

Correct exposure of Middle Grey for the 709(800) MLUT. Middle Grey should be 42%. 90% will be 90%.

Correct exposure of the 709(800) LUT using a 90% white card, white will be 90%. You can use zebras at 90% to check this level.

Correct exposure of the 709(800) LUT using a 90% white card, white will be 90%. You can use zebras at 90% to check this level.

The above images show the correct exposure levels for the 709(800) LUT. Middle grey should be 42% and 90% white is… well 90%. Very simple and you can easily use zebras to check the white level by setting them to 90%. As middle grey is where it normally is on a TV or monitor and white is also where you would expect to see it, when using the 709(800) LUT, if the picture looks right in the viewfinder then it generally is right. This means that the 709(800) LUT is particularly well suited to being used to set exposure as a correctly exposed scene will look “normal” on a 709 TV or monitor.

You can use any of the other LUT’s or LOOK to set your exposure if you wish, but most of the other LUT’s and Looks have a contrast range that far exceeds the Rec-709 standard used in most monitors. So you may need to adjust your exposure levels slightly to allow for this.

The LC709-TypeA Look is very popular as a LUT for the FS7 as it closely mimics the images you get from an Arri Alexa (“type A” = type Arri).

The “LC” part of the Look’s name means Low Contrast and this also means – big dynamic range. Whenever you take a big dynamic range (lots of shades) and show it on a display with a limited dynamic range (limited shades) all the shades in the image get squeezed together to fit into the monitors limited range and as a result the contrast gets reduced. This also means that middle grey and white are also squeezed closer together. With conventional 709 middle grey would be 42% and white around 80-90%, but with a high dynamic range/low Contrast gamma curve white gets squeezed closer to grey to make room for the extra dynamic range. This means that middle grey will remain close to 42% but white reduces to around 72%. So for the LC709 Looks in the FS7 optimum exposure is to have middle grey at 42% and white at 72%. Don’t worry too much if you don’t hit those exact numbers, a little bit either way does little harm.

Correct white level for the LC709 LOOK’s. White should be around 72%

Correct white level for the LC709 LOOK's. White should be around 72%

Correct white level for the LC709 LOOK’s. White should be around 72%

 

RECOMMENDED LUT EXPOSURE LEVELS.

Here are some white levels for some of the built in LUT’s. The G40 or G33 part of the HG LUT’s is the recommended value for middle grey. Use these levels for the zebras if you want to check the correct exposure of a 90% reflectance white card. I have also include an approximate zebra value for a piece of typical white printer paper.

709(800) = Middle Grey 42%. 90% Reflectance white 90%, white paper 92%.

HG8009(G40) = Middle Grey 40%. 90% Reflectance white 83%, white paper 86%.

HG8009(G33) = Middle Grey 33%. 90% Reflectance white 75%, white paper 80%.

The “LC709″ LOOK’s = Middle Grey 42%. 90% Reflectance white 72%, white paper 77%.

DONT PANIC if you don’t get these precise levels! I’m giving them to you here so you have a good starting point. A little bit either way will not hurt. Again, generally speaking if it looks right in the viewfinder or on your monitor screen, it is probably close enough not to worry about it.

WHAT IF YOU DON”T KNOW WHAT THE CORRECT LEVELS ARE?

If you ever need to confirm the correct exposure levels for any given LUT or Look it’s really easy to find out these levels for yourself.

Put the camera in to CineEI.  Turn OFF the LUT’s. With the LUT’s OFF use a grey card or white card to set the exposure for the Slog curve you have chosen (S-Log2 will be added as an additional curve in 2015).

Once you have established the correct exposure for the SLog, without adjusting anything else, turn on the LUT’s, ensure the camera is at 2000EI and choose the LUT or LOOK that you want to check.  Now you can measure the grey and white point for the LUT/Look you have chosen and see on the monitor or in the viewfinder what the correct exposure looks like via the LUT. It probably won’t be vastly different from normal 709 in most cases, especially middle grey this tends to stay very close to 42%, but it’s useful to do this check if you are at all unsure.

If  you can, use a LUT, not a LOOK for exposure. That’s my recommendation, not a hard and fast rule but if you’re new to CineEI, LUT’s and Looks please read on as to why I say this. Otherwise skip on to Baking-in the LUT/LOOK.

I recommend that for exposure evaluation you should normally try to use one of the cameras built in  MLUT’s not the LOOK’s. Especially if you are new to LUT’s and Looks. This is because the LUT’s behave differently to the Looks when you use a high or low EI.

I found that when you lower the EI gain, below native, the output level of the LOOK lowers, so that depending on the EI, the clipping, peak level and middle grey values are different. For example on the FS7 at 500 EI the LC709TypeA LUT has a peak output (clipping) level of just 90% while at 2000 EI it’s 98%. This also means that middle grey of the LOOK will shift down slightly as you lower the EI. This means that for consistent exposure at different low EI’s you may need to offset your exposure very slightly (it is only very slight). It also means that at Native EI if the waveform shows peak levels at 90% you are not overexposed or clipped, but at low EI’s 90% will mean clipped Slog, so beware of this peak level offset with the LOOK’s.

When you raise the EI of the LOOKS, the input clipping point of the Look profile changes. For each stop of EI you add the LOOK will clip one stop earlier than the underlying Slog. For example set the LC709TypeA LUT to 8000 EI and the LOOK itself hard clips 2 stops before the actual SLog3 clips. So your LOOK will make it appear that your Slog is clipped up to 2 stops before it actually is and the dynamic range and contrast range of the LOOK varies depending on the EI, so again beware.

So, the Looks may give the impression that the Slog is clipped if you use a high EI and will give the impression that you are not using your full available range at a low EI. I suspect this is a limitation of 3D LUT tables which only work over a fixed 0 to1 input and output range.

What about the 1D LUT’s? Well the built in LUT’s don’t cover the full range of the Slog curves so you will never see all of your dynamic range at all at once. However I feel their behaviour at low and high EI’s is a little bit more intuitive than the level shifts and early clipping of the LOOKs.

The 1D LUT’s will always go to 109%. So there are no middle grey shifts for the LUT, no need to compensate at any EI. In addition if you see any clipping below 109% then it means your SLog is also clipping, for example if you set the camera to 500 EI, when you see the 709(800) LUT clipping at 105% it’s because the Slog is also clipping.

At High EI’s you won’t see the top end of the SLog’s exposure range anyway because the 1D LUT’s range is less than Slog’s range, but the LUT itself does not clip, instead highlights just go up above 109% where you can’t see them and this in my opinion is more intuitive behavior than the clipped LOOK’s that don’t ever quite reach 100% and clip at lower than 100% even when the Slog itself isn’t clipped.

At the end of the day use the ones that work best for you, just be aware of the limitations of both and that the LUT’s and LOOKs behave very differently. I suggest you test and try both before making any firm decisions, but my recommendation is to use the LUT’s rather than the LOOK’s when judging exposure.

 


 

Using the built in LUT’s?

There are currently 4 built in LUT’s: P1 709(800), P2 HG8009G40, P3 HG8009G33, P4 Slog3, I expect S-log2 will be added once S-Log2 is enabled in the camera. You can also create your own 1D LUT’s in Sony’s Raw Viewer software or Catalyst Browse and user 3D LOOK’s in most grading suites but that’s a whole other subject that I’m not going to cover right here (see this article for user 3D Look creation or go to the additional LUT creation section at the bottom of this document), for now lets just consider the built in LUT’s.

LUT’s P1, P2 and P3 have an 800% exposure range. The camera itself  has a 1300% exposure range when you’re Slog or raw. So if you want to see your full exposure range then you should select SLog as your LUT or turn the LUT’s off. However the pictures will be flat looking and lack contrast, which makes accurate focussing harder and you must set your exposure using the SLog levels given above, so in addition Slog 2 will look dark. Note that if you press the “camera” button by the side LCD screen 2 times you can use the hot keys around the LCD to change LUT and turn the LUT’s on and off.

If you use LUT’s P1, P2 or P3 then the viewfinder pictures will have near “normal” contrast. Your exposure levels will be more normal looking (although P3 should have middle grey at 33% so should look a touch darker than normal) but you won’t be seeing the full recorded range, only 800% out of the possible 1300% is displayed, so some things might look clipped in the viewfinder while the actual recording is not. I suggest switching  the LUT’s off momentarily to check this, or connect a second monitor to the Main SDI to monitor the non LUT output. Do note that if using Slog2/Slog3 as a LUT and at a positive EI ISO you won’t see your full recording range. You will still see up to a stop more than the 800% LUT’s but at high EI’s the Slog2 or Slog3 LUT will clip slightly before the camera recordings. At low EI’s the Slog LUT’s will clip at the same time as the camera, but the level of the clipping point on any waveform display via the LUT output will be lower and this can be a little confusing. Unfortunately if you turn off the LUT’s you can’t get the cameras built in waveform display. This is where an external monitor with waveform becomes very handy to monitor the non LUT native ISO Slog output from the main HDSDI output.

Personally I prefer to use the 709(800) LUT for exposure as the restricted range matches that of most consumer TV’s etc so I feel this gives me a better idea of how the image may end up looking on a consumers TV. The slightly restricted range will help highlight any contrast issue that may cause problems in post. It’s often easier to solve these issues when shooting rather than leaving it to later. Also I find my Slog exposure more accurate as the LUT’s restricted range means you are more likely to expose within finer limits. In addition as noted above I fell the LUT’s behaviour is more predictable and intuitive at high and low EI’s than the LOOK’s.


 

BAKING IN THE LUT/LOOK.

When shooting using a high or low EI, the EI gain is added or subtracted from the LUT or LOOK, this makes the picture in the viewfinder or monitor fed via the LUT brighter or darker depending on the EI used. In Cine-EI mode you want the camera to always actually record the S-log at the cameras native 2000 ISO. So normally you want to leave the LUT’s OFF for the internal recording. Just in case you missed that very important point: normally you want to leave the LUT’s OFF for the internal recording!

You need to turn ON the SD1 and Internal Rec LUT t "Bake In" a LUT. Normally leave this OFF.

You need to turn ON the SD1 and Internal Rec LUT t “Bake In” a LUT. Normally leave this OFF.

Just about the only exceptions to this might be when shooting raw or when you want to deliberately record with the LUT/Look baked in to your XQD recordings. By “baked-in” I mean with the gamma, contrast and color of the LUT/Look permanently recorded as part of the recording. You can’t remove this LUT/look later if it’s “baked-in”.

No matter what the LUT/Look settings, if you’re recording raw on an external raw recorder, recorder the raw is always recorded at 2000 ISO.  But the internal XQD recordings are different. It is possible, if you choose, to apply a LUT/LOOK to the XQD recordings by setting the “SDI1 & Internal Rec” LUT to ON. The gain of the recorded LUT/LOOK will be altered according to the CineEI gain settings. This might be useful to provide an easy to work with proxy file for editing, with the LUT/LOOK baked-in while shooting raw. Or as a way to create an in-camera look or style for material that won’t be graded. Using a baked-in LUT/LOOK for a production that won’t be graded or only have minimal grading is an interesting alternative to using Custom Mode that should be considered for fast turn-around productions.

In most cases however you will probably not have a LUT applied to your primary recordings. If shooting in S-Log you must set LUT – OFF for “SDI1 & Internal Rec” See the image above. With “SDI1 & Internal Rec” Off the internal recordings, without LUT, will be SLog2 or Slog3 and at 2000 ISO.

You can tell what it is that the camera is actually recording by looking in the viewfinder. At the center right side of the display there is an indication of what is being recorded on the cards. Normally for Cine-EI this should say either SLog2 or Slog3. If it indicates something else, then you are baking the LUT in to the internal recordings.

The internal recording gamma is shown on the right of the VF. This is recording SLog-3

The internal recording gamma is shown on the right of the VF. This is recording SLog-3

The indication here shows that the 709(800) LUT is being baked-in to the internal recordings.

The indication here shows that the 709(800) LUT is being baked-in to the internal recordings.


 

USING EI GAIN.

CHANGING THE EI.

Latitude Indication.

At the native 2000 EI you have 6 stops of over exposure latitude and 8 stops of under exposure latitude. This is how much headroom your shot has. Your over exposure latitude is indicated whenever you change the EI level. In the image below you can see the EI 2000EI followed by a 6.0E the 6.0E is the over exposure latitude.

The EI and Lattitude indication on the FS7.

The EI and Lattitude indication on the FS7.

The EI gain is altered by changing the cameras gain switch and the EI levels assigned to each of the Hi/Mid/Low switch positions can be changed in the camera menu. I recommend setting the EI steps to H 2000, M 1000 and L 500 as this allows you to select the native EI plus 1 stop and 2 stops down (each time you halve the ISO you are shifting the exposure one stop down).

The PXW-FS7 EI settings for the gain switch.

The PXW-FS7 EI settings for the gain switch.

REDUCING THE EI.

So what happens when you halve the EI gain to 1000EI?  1 stop of gain/ISO will subtracted from the LUT. As a result the picture you see via the LUT becomes one stop darker (a good thing to know is that 1 stop of exposure is the same as 6db of gain or a doubling or halving of the ISO). So the picture in the viewfinder gets darker. But also remember that the camera will still be recording at the native ISO (unless baking-in the LUT).


 

Why does this happen and what’s happening to my pictures?

First of all lets take a look at the scene, as seen in the cameras viewfinder when we are at the native 2000 EI and then with the EI changed one stop down so it becomes 1000EI. The native ISO on the left, the one stop lower EI on the right.

2000EI and 1000EI as seen in the viewfinder with NO exposure change.

2000EI and 1000EI as seen in the viewfinder with NO exposure change.

2000EI and 1000EI as seen in the viewfinder with NO exposure change.

So, in the viewfinder, when you lower the EI by one stop (halving the EI) the picture becomes darker by 1 stop. If using an external monitor with a waveform display connected to SDI2 or the HDMI output this too would get darker and the waveform levels decrease by one stop.

What do you do when you have a dark picture? Well most people would normally compensate for a dark looking image by opening the iris to compensate. As we have gone one stop darker with the EI gain, to return the viewfinder image back to the same brightness as it was at the native EI you would open the iris by one stop.

If using a light meter you would start with the meter set at 2000 ISO and set your exposure according to the what the meter tells you. Then you reduce your EI gain on the camera (the viewfinder image gets darker). Now you also change your ISO on the light meter to the new EI. The light meter will then tell you to open the iris by one stop.

So now, after reducing the EI by one stop and then compensating by opening the iris by 1 stop, the viewfinder image is the same brightness as it was when we started.


 

But what’s happening to my recordings?

Remember the recordings, whether on the XQD card (assuming the SD1 & Internal Rec LUT is OFF) are always at the cameras native 2000 ISO, no matter what the EI is set to. As a result, because you will have opened the iris by 1 stop to compensate for the dark viewfinder or new light meter reading the recording will have become 1 stop brighter. Look at the image below to see what we see in the viewfinder alongside what is actually being recorded. The EI offset exposure with aperture correction as seen in the viewfinder (left hand side) looks normal, while the actual native ISO recording (right hand side) is 1 stop brighter.

At 1000EI the Viewfinder image on the left is 1 stop darker than the actual recorded image (on the right) which is recorded at the native 2000 ISO.

VF-and-Internal

How does this help us, what are the benefits?

When you take this brighter recorded image in to post production the colorist will have to bring the levels back down to normal as part of the grading process. As he/she will be reducing the levels in post production by around 1 stop (6db) any noise in the picture will also be reduced by 6db. The end result is a picture with 6db less noise than if shot at the native EI. Another benefit may be that as the scene was exposed brighter you will be able to see more shadow information.

Is there a down side to using a low EI?

Because the actual recorded exposure is brighter by one stop you have one stop less headroom. However the PXW-FS7 has an abundance of headroom so the loss of one stop is often not going to cause a problem. I find that going between 1 and 1.5 EI stops down rarely results in any highlight issues. But when shooting very high contrast scenes and using a low EI it is worth toggling the LUT on and off to check for clipping in the SLog image.


 

What is happening to my exposure range?

What you are doing is moving the mid point of your exposure range up in the case of a lower EI (up because you are opening the aperture, thus making the recordings brighter). This allows the camera to see deeper into the shadows increasing the under exposure latitude, but reduces the over exposure latitude. The reverse is also possible. If you use a higher EI you shift your mid point down. This gives you more headroom for dealing with very bright highlights, but you won’t see as far into the shadows and the final pictures will be a little noisier as in post production the overall levels will have to be brought up to compensate for the darker overall recordings.

Cine-EI allows us to shift our exposure mid point up and down.  Lowering the EI gain gives you a darker VF image so you tend to overexpose the actual recording which reduces over exposure headroom but increases under exposure range (and improves the signal to noise ratio). Adding EI gain gives a brighter Viewfinder image which makes you underexpose the recordings, which gives you more headroom but with less underexposure range (and a worse signal to noise ratio).

Slide01

Post Production.

When shooting raw information about the EI gain is stored in the clips metadata. The idea is that this metadata can be used by the grading or editing software to adjust the clips exposure level in the edit or grading application so that it looks correctly exposed (or at least exposed as you saw it in the viewfinder via the LUT). The metadata information is recorded alongside the XAVC footage when shooting SLog2/3. However, currently few edit applications or grading applications use this metadata to offset the exposure, so S-Log2/3 material may look dark/bright when imported into your edit application and you may need to add a correction to return the exposure to a “normal” level. As the footage is log you should use log corrections to get the very best results. As an alternative you can use a correction LUT to move the exposure up and when I provide LUT sets on my website I will always try to include LUT’s for over and under exposure.


 

WHAT IF YOU ARE SHOOTING USING HFR (High Frame Rate) AND LUT’S CANT BE USED.

In HFR you can either have LUT’s on for everything including internal recording, or all off, no LUT’s at all. This is not helpful if your primary recordings are internal SLog.

So for HFR in many cases you will have to just work viewing the native S-log.

 

 

CINE-EI SUMMARY:

CineEI allows you to “rate” the camera at different ISO.

You MUST use a LUT for CineEI to work as designed.

A low EI number will result in a brighter exposure which will improve the signal to noise ratio giving a cleaner picture or allow you to see more shadow detail. However you will loose some over exposure headroom.

A high EI number will result in a darker exposure which will improve the over exposure headroom but decrease the under exposure range. The signal to noise ratio is worse so the final picture may end up with more noise.

A 1D LUT will not clip and appear to overexpose as readily as a 3D LOOK when using a low EI, so a 1D LUT may be preferable.

When viewing via a 709 LUT you expose using normal 709 exposure levels. Basically if it looks right in the viewfinder or on the monitor (via the 709 LUT) it almost certainly is right.

When I shoot with my FS7 I normally rate the camera at between 800 and 1000EI. I find that 5 stops of over exposure range is plenty for most situations and I prefer the decrease in noise in the final pictures. But please, test and experiment for yourself.


 

QUICK GUIDE TO CREATING YOUR OWN LOOK’s (Using DaVinci Resolve).

It’s very easy to create your own 3D LUT for the FS7 using DaVinci Resolve or just about any grading software with LUT export capability. The LUT should be a 17x17x17 or 33x33x33 .cube LUT. This is what Resolve creates by default and .cube LUT’s are the most common types of LUT in use today.

First simply shoot some test Slog3 clips at 2000EI. In addition you should also use the same color space (S.Gamut or S.Gamut3.cine) for the test shot as you will when you want to use the LUT. I recommend shooting a variety of clips so that you can asses how the LUT will work in different lighting situations.

Import and grade the clips from the test shoot in Resolve creating the look that you are after for your production or as you wish your footage to appear in the viewfinder of the camera. Then once your happy with the look of the graded clip, right click on the clip in the timeline and “Export LUT”. Resolve will then create and save a .cube LUT.

Then place the .cube LUT file created by the grading software on an SD card in the PMWF55_F5 folder. You may need to create the following folder structure on the SD card. So first you have a PRIVATE folder, in that there is a SONY folder and so on.

PRIVATE   :   SONY   :    PRO   :   CAMERA   :    PMWF55_F5

Put the SD card in the camera, then go to the “File” menu and go to “Monitor 3D LUT” and select “Load SD Card”. The camera will offer you a 1 to 4 destination memory selection. Choose 1,2,3 or 4, this is the memory location where the LUT will be saved. You should then be presented with a list of all the LUT’s on the SD card. Select your chosen LUT to save it from the SD card to the camera.

Once loaded in to the camera when you choose 3D User LUT’s you can select between user LUT memory 1,2,3 or 4. Your LUT will be in the memory you selected when you copied the LUT from the SD card to the camera.

 

Posted in Uncategorized | Tagged , , , , , , | 1 Comment

New Version Of Catalyst Browse

Sony have released version 1.0.3 of Catalyst Browse. This new version fixes the issue of some people being unable to open files from the PXW-FS7. The new version can be downloaded from here: http://www.sonycreativesoftware.com/download/catalystbrowse

Posted in Uncategorized | Leave a comment

New Firmware for PXW-FS7

If you are the luck owner of a PXW-FS7 then you will want to download this new firmware update from Sony. It fixes many of the bugs found in the release firmware and is easy to instal, taking about 20 mins to complete. It also activates the Extension unit.

Click here to go to the FS7 firmware.

 

Posted in Uncategorized | Tagged , , | 1 Comment

New Film Look LUT’s for the PXW-FS7, PMW-F5 and PMW-F55

I have created two new sets of film look LUT’s for the FS7, F5 and F55. These LUT’s should be used in conjunction with S-Log3 and SGamut3.cine. They will give you a high contrast film like look that mimics Kodak film stock with slightly blue dark and mid tones and warm skin tones. The are 3D cube LUT’s and the two sets include LUT’s with compensation for under and over exposure.

To use the LUT’s in camera on the PXW-FS7, PMW-F5 or PMW-F55 then the LUT’s need to be placed in the PMWF55_F5  folder on an SD card. The correct folder structure should look like this:

PRIVATE – SONY – PRO – CAMERA – PMWF55_F5

Slog3_cine-film-look-luts
If you find the LUT’s useful please consider buying me a drink, they did take some time to create:


Type



Posted in Uncategorized | 1 Comment

FS7 Launch Event in Dubai.

The PXW-FS7 with the extension unit fitted, a V-Mount battery and a Vocas base plate.

The PXW-FS7 with the extension unit fitted, a V-Mount battery and a Vocas base plate.

Want to know more about Sony’s new FS7 camcorder? Want to get your hands on one and shoot a short film with one? If you are in Dubai then I am helping Sony run an event for you. On the 8, 9 and 10th of November we are holding a series of workshops where the participants will help shoot a short drama film. Everyone will get a chance to shoot with the FS7 in a variety of modes including hand held, on a MOVI, super slow motion, slider mounted etc. At the end of the shoot, if you bring your own USB3 hard drive you will be able to take away a copy of all your footage so you can edit the short drama film together and play with the amazing PXW-FS7 footage in your own time.

This event is going to be very different from the workshops I normally hold. The aim is to get everyone shooting with the camera so that you get get a great feel for the ergonomics, functionality and capabilities of the camera. It should be fun and interesting, plus it really doesn’t matter whether you are a seasoned cinematographer or a complete novice, there will be cameras set up to suit different skill and ability levels..

So come and join me in Dubai for this exciting event. To book a place please follow this link. Don’t forget to indicate the dates and time slots that suit you best. I hope to see lot’s of you there.

PLAY WITH THE PXW-FS7 IN DUBAI.

Posted in Uncategorized | Leave a comment

How to use S-Log3 on the Sony PXW-FS7.

So with the FS7 now shipping and the first units landing in peoples hands I have put together a comprehensive guide to using S-Log3 and CineEI on the PXW-FS7. Please follow this link to read or download the guide to CineEI on the PXW-FS7.

It’s important to note that S-Log3 has a peak recording level of 92IRE so never goes above this. Don’t be surprised to find that your overall levels are going to be much lower than you would normally use for conventional 709 shooting. In addition I can’t stress enough how important it is to learn how to use LUT’s (look up tables) in camera and in post production with this camera. It will make your life so much simpler and easier. LUT’s may sound complicated and difficult, but they are not. If you want to create your own LUT’s take a look at this guide here.

The FS7 is an incredibly powerful camera. But if you really want to get the most from the Cine-EI mode and S-Log then you need to adjust the way you shoot. You can’t just apply normal Rec-709 exposure levels to S-Log3, it’s not designed to work that way. However by using the 709(800) LUT on the viewfinder output you can expose based on the viewfinder image as you would normally, while the S-Log3 recordings will be at the correct levels. So do learn how to implement LUT’s correctly, it will make your life so much easier. Take a look at this video for an idea of how it works. The video features an F5 but the FS7 is the same.

While you’re at it you might also want to take a look at this article on the S-log3 gamma curve. Many people will look at the S-log and think that it looks noisy and be worried by this. You shouldn’t be. The shape of the log curve means that before grading and application of a LUT it can emphasise noise. However once you use a LUT to convert from S-log3 to 709 you will find that most of the noise will go away. Again, please use a LUT as simply trying to grade S-log3 in to 709 space is often not as effective as adding the right LUT. If you really know what you are doing, by using S-Curves and log grading tools it is possible to grade the native S-log3 in a 709 environment, but LUT’s do make it simpler. Another useful way to get from S-log3 to 709 is to use the new color chart tool in Resolve which recognises and corrects either a Macbeth chart or DSC One Shot chart to the correct levels automatically. When you set up this process in Resolve you will select the source gamma as S-Log3 so the correction compensates for the gamma curve as well as adding color correction. I’lll write this up in more depth in the next couple of weeks.

So enjoy your FS7 if you have one. As soon as mine arrives I will write up the correct way (or at least the designed way) to use the Cine-EI mode, in the mean time the F5/F55 Cine-EI guide can be used, the process is exactly the same on the FS7.

Posted in Uncategorized | Tagged , , , , | Leave a comment

Notes on the Production versions of the PXW-FS7

I was lucky enough to get my hands on a production model (one with a real serial number, not a pre-production sample) of the new Sony PXW-FS7 last week.

One of the things that a lot of people that have played with the pre-production models noticed was that the hand grip was somewhat loose and flexible. Even when “locked” in position the hand grip could be moved from side to side or twisted slightly. This excess play was not apparent on the production camera giving the unit a much more solid feel.

The viewfinder bracket design does not appear to have changed from the pre-production cameras. I had expected there to be a ridge in the bracket on the camera to prevent the viewfinder arm (which has a detent groove in it) from twisting and thus the viewfinder sagging. There didn’t appear to be any mechanism in the production camera to stop viewfinder sag other than simply tightening the locking screw very tight. I think this will be a small area of annoyance with the camera. Having said that the design makes it very easy for 3rd parties to produce alternate mounting arms and brackets for the camera. One area that is greatly improved over the pre-production cameras is the arm that the microphone bracket and viewfinder bracket attach too is now solidly mounted so this will not rotate.

An often asked question is does the FS7 have cache record, well the good news is yes, it does have cache record. It also has simultaneous record where the same footage is recorded on both cards at the same time.

When you buy the camera in the box you will get the hand-grip, a single BP-U30 battery, a BC-U1 charger, MPA-AC1 mains power supply, a small wifi dongle and a wireless remote control. So not a bad package all in all.

Posted in Uncategorized | Tagged | 30 Comments

Sample clips from The FS7.

I’ve placed some straight-from-the-camera PXW-FS7 clips in my drop-box: Click here to download them. The daylight clips are S-log3 and the after dark clips shot with Hypergamma 7. All are XAVC. Some 50p. You can use Sony’s new Catalyst Browse software to view the clips and play with some basic grading controls. Adobe Premiere CC will also open them just fine.

If you find the clips useful please consider buying me a drink:


Type



Posted in Uncategorized | 11 Comments

Shooting guide for the PXW-FS7

Just a quick note to remind those eagerly waiting the arrival of their FS7 cameras that the CineEI mode of the FS7 is just about identical to the CineEI mode of the F5 and F55. SO if you want to know how it works then take a look at my guides to CineEI and LUT’s on the F5 and F55. 

Posted in Uncategorized | Tagged , , , , | Leave a comment

Using S-log2 from the A7S in post production.

If you have followed my guide to shooting S-Log2 on the A7s then you may now be wondering how to use the footage in post production.

This is not going to be a tutorial on editing or grading. Just an outline guide on how to work with S-log2, mainly with Adobe Premiere and DaVinci Resolve. These are the software packages that I use. Once upon a time I was an FCP user, but I have never been able to get on with FCP-X. So I switched to Premiere CC which now offers some of the widest and best codec support as well as an editing interface very similar to FCP. For grading I like DaVinci Resolve. It’s very powerful and simple to use, plus the Lite version is completely free. If you download Resolve it comes with a very good tutorial. Follow that tutorial and you’ll be editing and grading with Resolve in just a few hours.

The first thing to remember about S-Log2/S-gamut material is that it has a different gamma and colour space used by almost every TV and monitor in use today. So to get pictures that look right on a TV we will need to convert the S-Log2 to the standard used by normal HD TV’s which is know as Rec-709. The best way to do this is via a Look Up Table or LUT.

Don’t be afraid of LUT’s. It might be a new concept for you, but really LUT’s are easy to use and when used right they bring many benefits. Many people like myself share LUT’s online, so do a google search and you will find many different looks and styles that you can download for your project.

So what is a LUT? It’s a simple table of values that converts one set of signal levels to another. You may come across different types of LUT’s… 1D, 3D, Cube etc. At a basic level these all do the same thing, there are some differences but at this stage we don’t need to worry about those differences. For grading and post production correction, in the vast majority of cases you will want to use a 3D Cube LUT. This is the most common type of LUT. The LUT’s that you use must be designed for the gamma curve and colour space that the material was shot in. So, in the case of the A7s we want LUT’s that are designed for S-Log2 and S-Gamut. LUT’s designed for anything other than this will still transform the footage, but the end results will be unpredictable as the tables input values will not match the correct values for S-Log2.

One of the nice things about LUT’s is that they are non-destructive. That is to say that if you add a LUT to a clip you are not actually changing the original clip, you are simply altering the way the clip is displayed. If you don’t like the way the clip looks you can just try a different LUT.

If you followed the A7s shooting guide then you will remember that S-Log2 takes a very large shooting scene dynamic range (14 stops) and squeezes that down to fit in a standard video camera recording range. When this squeezed or compressed together range is then shown on a conventional REC-709 TV with a relatively small dynamic range (6 stops) the end result is a flat looking, low contrast image where the overall levels are shifted down a bit, so a well as being low contrast and flat the pictures may also look dark.

 

To make room for the extra dynamic range and the ability to record very bright objects, white and mid tones are shifted down in level.

To make room for the extra dynamic range and the ability to record very bright objects, white and mid tones are shifted down in level.

The on screen contrast appears reduced as the capture contrast is greater than the display contrast.

The on screen contrast appears reduced as the capture contrast is greater than the display contrast.

To make the pictures on our conventional 709 TV have a normal contrast range, in post production we need to expand the  the squeezed recorded S-Log2 range to the display range of REC-709. To do this we apply an S-Log2 to Rec-709 LUT to the footage during the post production process. The LUT table will shift the S-log2 input values to the correct REC-709 output values. This can be done either with your edit software or dedicated grading software. But, we may need to do more than just add the LUT.

Adding a LUT in post production expands the squeezed S-Log2 recording back to a normal contrast range.

Adding a LUT in post production expands the squeezed S-Log2 recording back to a normal contrast range.

There is a problem because the TV only has a limited display range, often smaller that the recorded image range. So when we expand the squeezed S-Log2 footage back to a normal contrast range the amount of dynamic range in the recording exceeds the dynamic range that the TV can display so the highlights and brighter parts of the picture are lost, they are no longer seen and as a result the footage may now look over exposed.

With the dynamic range now expanded by the LUT the recordings brightness range exceeds the range that the TV or monitor can show, so  while the contrast is correct, the pictures may look over exposed.

With the dynamic range now expanded by the LUT the recordings brightness range exceeds the range that the TV or monitor can show, so while the contrast is correct, the pictures may look over exposed.

But don’t panic! The brightness information is still there in your footage, it hasn’t been lost, it just can’t be displayed. So we need to tweak and fine tune the footage to bring the brighter parts of the image back in to range. This is “grading” or correcting the material.

Normally you want to grade the clip before it passes through the LUT as prior to the LUT the full range of the footage is always retained. The normal procedure is to add the LUT to the clip or footage as an output LUT, that is to say the LUT is on the output from the grading system. Although it’s preferable to have the LUT after any corrections, don’t worry too much about where your LUT goes. Most edit and grading software will still retain the full range of everything you have recorded, even if you can’t always see it on the TV or monitor.

By grading or adjusting the footage before it enters the LUT we can bring the highlights back within the range that the TV or monitor can show.

By grading or adjusting the footage before it enters the LUT we can bring the highlights back within the range that the TV or monitor can show.

If you chose to deliberately over expose the A7s by a stop or two to get the best from the 8 bit recordings (see part one of the guide) then the LUT that you should use should also incorporate compensation for this over exposure. The LUT set that I provided for the A7s includes LUTs that have compensation for +1 and +2 stops of over exposure.

IN PRACTICE.

So how do we do this in practice?

First of all you need some LUT’s. If you haven’t already downloaded my A7s LUT set please download these.

To start off with you can just edit your S-Log2 footage as you would normally. Don’t worry too much about adding a LUT at the edit stage. Once the edit is locked down you have two choices. You can either export your edit to a dedicated grading package, or, if your edit package supports LUT’s you can add the LUT’s directly in the edit application.

Applying LUT’s in the edit application.

In FCP, Premiere CS5 and CS6 you can use the free LUT Buddy Plug-In from Red Giant to apply LUT’s to your clips.

In FCP-X you can use a plugin called LUT Utility from Colorgrading Central.

In Premiere CC you use the built in Lumetri filter plugin found under the “filters”, “color correction filters” tab (not the Lumetri Looks).

In all the above cases you add the filter or plugin to the clip and then select the LUT that you wish to use. It really is very easy. Once you have applied the LUT you can then further fine tune and adjust the clip using the normal color correction tools. To apply the same LUT to multiple clips simply select a clip that already has the LUT applied and hit “copy” or “control C” and then select the other clips that you wish to apply the LUT to and then select “paste – attributes” to copy the filter settings to the other clips.

Exporting Your Project To Resolve (or another grading package).

This is my preferred method for grading as you will normally find that you have much better correction tools in a dedicated grading package. What you don’t want to do is to render out your edit project and then take that render into the grading package. What you really want to do is export an edit list or XML file that contains the details of your project. The you open that edit list or XML file in the grading package. This should then open the original source clips as an edited timeline that matches the timeline you have in your edit software so that you can work directly with the original material. Again you would just edit as normal in your edit application and then export the project or sequence as preferably an XML file or a CMX EDL. XML is preferred and has the best compatibility with other applications.

Once you have imported the project into the grading package you then want to apply your chosen LUT. If you are using the same LUT for the entire project then the LUT can be added as an “Output” LUT for the entire project. In this way the LUT acts on the output of your project as a final global LUT. Any grading that you do will then happen prior to the LUT which is the best way to do things. If you want to apply different LUT’s to different clips then you can add a LUT to individual clips. If the grading application uses nodes then the LUT should be on the last node so that any grading takes place in nodes prior to the LUT.

Once you have added your LUT’s and graded your footage you have a couple of choices. You can normally either render out a single clip that is a compilation of all the clips in the edit or you can render the graded footage out as individual clips. I normally render out individual clips with the same file names as the original source clips, just saved in a different folder. This way I can return to my edit software and swap the original clips for the rendered and graded clips in the same project. Doing this allows me to make changes to the edit or add captions and effects that may not be possible to add in the grading software.

Posted in Uncategorized | 6 Comments