Category Archives: cinematography

Contrast and Resolution, intricately linked.

This is one of those topics that keeps coming back around time and time again. The link between contrast and resolution. So I thought I would take a few minutes to create some simple illustrations to demonstrate the point.

contrast1 Contrast and Resolution, intricately linked.
Best Contrast.

This first image represents a nice high contrast picture. The white background and dark lines have high contrast and as a result you can “see” resolution a long way to the right of the image as indicated by the arrow.

contrast2 Contrast and Resolution, intricately linked.
Lower contrast.

Now look at what happens as you slowly reduce the contrast in the image. As the contrast reduces the amount of resolution that you can see reduces. Keep reducing the contrast and the resolution continues to decrease.

contrast4 Contrast and Resolution, intricately linked.
Low Contrast.

Eventually if you keep reducing the contrast enough you end up with no resolution as you can no longer differentiate between light and dark.

Now look at what happens when you reduce the resolution by blurring the image, the equivalent of using a less “sharp” lower resolution lens for example. What happens to the black lines? Well the become less dark and start to look grey, the contrast is reducing.

contrast5 Contrast and Resolution, intricately linked.
Reduced resolution.

Hopefully these simple images show that contrast and resolution are intrinsically linked. You can’t have one without the other. So when choosing lenses in particular you need to look at not just resolution but also contrast. Contrast in a lens is affected by many things including flare where brighter parts of the scene bleed into darker parts. Flare also comes from light sources that may not be in your shot but the light is still entering the lens, bouncing around inside and reducing contrast as a result. These things often don’t show up if you use just a simple resolution chart. A good lens hood or matte box with flags can be a big help reduce stray light and flare, so in fact a matte box could actually make your pictures sharper. They are not just for pimping up your rig, they really can improve the quality of your images.

The measurement for resolution and contrast is called the MTF or modulation transfer function. This is normally used  to measure lens performance and the ability of a lens to pass the light from a scene or test chart to the film or sensor. It takes into account both resolution and contrast so tells you a lot about the lens or imaging systems performance and is normally presented as a graph of contrast levels over a scale of ever increasing resolution.

Advertisements

Why Nailing Your Mid Range Will Make Post Production Happy. Even with Cingammas and Hypergammas.

One of the concepts that’s sometimes hard to understand is why mid range exposure is so critical with most video cameras, even cameras with extended dynamic range. Cameras that use Cinegammas, Hypergammas  may give you great dynamic range and extra latitude but it’s still vital that you get your mid range exposed correctly. In many cases, the greater you cameras ability to capture a wide dynamic range the more critical mid range exposure becomes. I’ve often heard comments from users of XDCAM cameras complaining that they find it harder to work with cinegammas and hypergammas than the standard REC-709 gamma.
So why is this, it seams counter intuitive, surely a greater dynamic range makes exposure more forgiving?

exposure1 Why Nailing Your Mid Range Will Make Post Production Happy. Even with Cingammas and Hypergammas.
Typical Standard Gamma

First lets take a look at a standard gamma curve. These graphs are not accurate, just thrown together to illustrate the point. The standard gamma for HD, REC-709 can be considered to be near linear. Certainly in terms of “what you see is what you get” the idea behind REC-709 is that if the camera is set to 709 and the TV or monitor is 709 compliant then we will get a linear 1:1 reproduction of the real world. However REC-709 is based on the gamma curves used at the very beginnings of television broadcasting where TV’s and cameras had very limited dynamic range. True REC-709 only allows for about 6 stops of dynamic range and as a result the version of REC-709 used in most video cameras is tweaked somewhat to allow a greater dynamic range in the region of 8 to 10 stops while still producing a pleasing image on most TV’s. Another way of increasing dynamic range is to introduce some form of signal compression. The simplest form of this in common use is the cameras knee circuit. This simply takes anything above a certain brightness level (typically between 80 and 95%) and compresses it. We normal get away with this compression because it’s only affecting highlights like clouds in a bright sky or a bright window or lamp in the shot. Our own visual system is tuned primarily to mid tones, faces, plants and things like that so we don’t tend to find highlight compression overly obtrusive.
When considering your post production workflow and grading in particular, it’s important to remember that in most cases whenever anything is compressed then some of the original data is being discarded. In addition if the amount of compression is non-linear (increases or decreases with amplitude) then when we add a linear function to that, like adjusting the signal gain the non-linearity is also increased.
Based on these assumptions, you should be able to understand that anything exposed in the linear part of a gamma curve will grade very well because there is no extra compression and gain adjustments will behave as expected. Now if you look at the graph of a typical standard gamma curve (as above) you can see that everything below the knee point is pretty linear, so anything exposed in this range will grade easily and well (assuming it isn’t actually overexposed). For this reason standard gamma can be very forgiving to small over exposure problems as a slightly bright face should still be in the linear part of the curve. However overexpose to the point where the face starts to enter the knee area and all is lost, you’ll never make it look natural.

exposure2 Why Nailing Your Mid Range Will Make Post Production Happy. Even with Cingammas and Hypergammas.
Typical Cinegamma or Hypergamma

Now look at the curve for a typical Cinegamma or Hypergamma. You can see that this curve starts to become more curved and less linear much earlier than a standard gamma. This is how the extra latitude is gained. Compression is used to allow the camera to record a greater brightness range. This extra compression though comes at a price and that is linearity. The further up the exposure range you go the less linear the response (it’s actually becoming logarithmic). The result is that even though you have more dynamic range, if you do overexpose faces and skin tones by even just a small amount they will start to creep into the non linear part of the curve and this makes them harder to grade naturally. You may be less likely to get those ugly blown out highlights on a shiny face typical of video knee compression with cine/hypergammas, but you must still be very careful not to overexpose.

So there you have it. Greater dynamic range does not necessarily equate to more exposure tolerance. In fact it’s often the opposite. You might get better highlight handling, but you may find you need to be even more careful with how you expose. As we go forwards (or sideways at least) and linear raw becomes more common place then you will be able to shift you mid tone exposure up and down with a lot more flexibility as with a linear raw camera the last stop of exposure has the same linearity as the first, so in theory your mid tones can sit anywhere in the exposure range. Sony’s F65 is a great example of this. It has 14 stops of linear dynamic range. A face lit with a 3 stop range could be placed in stops 11-14 and would grade down to wherever you want just perfectly.

Calibrating your viewfinder or LCD.

smpte-arib-bars-sample Calibrating your viewfinder or LCD.One of the most important things to do before you shoot anything is to make sure that any monitors, viewfinders or LCD panels are accurately calibrated. The majority of modern HD cameras have built in colour bars and these are ideal for checking your monitor. On most Sony cameras you have SMPTE ARIB colour bars like the ones in the image here. Note that I have raised the black level in the image so that you can see some of the key features more clearly. If your using a LCD or OLED monitor connected via HDSDI or HDMI then the main adjustments you will have are for Contrast, Brightness and Saturation.

First set up the monitor or viewfinder so that the 100% white square is shown as peak white on the monitor. This is done by increasing the contrast control until the white box stops getting brighter on the screen. Once it reaches maximum brightness, back the contrast level down until you can just perceive the tiniest of brightness changes on the screen.

Once this is set you now use the pluge bars to set up the black level. The pluge bars are the narrow near black bars that I’ve marked as -2% +2% and +4% in the picture they are each separated by black. The -2% bar is blacker than black so we should not be able to see this. Using the brightness control adjust the screen so that you can’t see the -2% bar but can just see the +2% bar. The 4% bar should also be visible separated from the 2% bar by black.

Color is harder to set accurately. Looking at the bars, the main upper bars are 75% bars so these are fully saturated, but only at 75% luma. The 4 coloured boxes, 2 on each side, two thirds of the way down the pattern are 100% fully saturated boxes. Using the outer 100% boxes increase the saturation or colour level until the color vibrance of the outer boxes stops increasing, then back the level down again until you just perceive the color decreasing. I find this easiest to see with the blue box.

Now you should have good, well saturated looking bars on you monitor or LCD and provided it is of reasonable quality it should be calibrated adequately well for judging exposure.

I find that on an EX or F3 the LCD panel ends up with the contrast at zero, colour at zero and brightness at about +28 on most cameras.

Setting Exposure with Standard Gammas – Use your judgement!

grey-boxes Setting Exposure with Standard Gammas - Use your judgement!First take a long look at the image to the left. look at the 3 small grey boxes. What do you see?
Is the middle of the three grey boxes brighter than the others? Does the bottom small grey box look about the same brightness as the top one?

This post comes as the result of a discussion going on elsewhere about how to correctly expose when using standard gammas. Basically discussing how to expose when your not going to do anything to your footage in post,  for what I would call “direct to air”.
There are many ways of setting exposure. You could use a light meter, you could use zebras,  you could use a waveform monitor or histogram.

Lets imagine that grey box is a face. If you were using zebras you would normally set them to between 65% and 70% and then expose the shot so the face exhibited the zebra pattern over any parts of the face not overly highlighted or in shadow. This is the textbook way to expose using zebras. Another way to expose might be to use a mid grey card (also known as an 18% grey card). With standard and cinegammas you would normally expose this at 50% using the cameras histogram, waveform monitor or spot meter. Again this is a textbook, technically correct exposure. But this is the real world and the real world is very different to the theoretical world because light plays tricks with our eyes and the overall brightness of a scene can change the mood of the shot.

Lets say you have a room with dark coloured walls.  At one end is a window and you have an actor standing at each end of the room, one against the dark wall, one against the window. We have two shots in our scene, one looking at the actor against the dark wall, one looking at the actor against the window. What happens if we expose both faces using zebras to exactly the same textbook 65% level? Well the face against the window will look darker than the face against the black wall. Look back at the grey boxes on the left. The top and middle grey boxes are exactly the same brightness but because the middle box is against black, to our eye’s it appears brighter than the top one. Now if we were to use a histogram or waveform monitor to expose these two shots, all the extra white in the window shot might tempt you to reduce the exposure, this would make the problem even worse. In fact to expose these two shots so that the faces match as you cut between them you need to reduce the exposure on the darker shot. Looking at the grey boxes again the lowest box is actually at 45% while the other two are at 65%, yet the lower box appears to be about as bright as the top box.
So what am I trying to say? Well exposure isn’t all about setting object “X” at exposure “Y”. You must use your judgement and a known monitor or viewfinder to asses your pictures. Learn to interpret what your monitor is telling you, learn to recognise scenes that may need to be exposed away from the text book values and methods. Above all else don’t be afraid to expose for what looks right, as opposed to object “X” at value “Y”.
I suppose to follow up on this I should tell you how to calibrate your viewfinder or monitor… I’ll do that soon in a later article. Did you find this useful? let me know, I’m planning on writing more about dealing with light and lighting.