Category Archives: PMW-F55

DIY Assignable Button Labels.

DSC_0191-3-1024x768 DIY Assignable Button Labels.
DIY labels for the assignable buttons on my FX9.

Maybe it’s just because I’m getting old,  but I do like to have a label to remind me of what I have assigned to the assignable buttons on my cameras. 

There are lot’s of ways you can make a label from a post-it-note to camera tape. But I recently got a new label printer from Dymo and with the right tape it will print white text on clear tape.  The printers are around $40 so they are not too expensive. If you’re anything like me once you get one you will find yourself labelling everything, so a worthwhile investment. 

DSC_0192-3-768x1024 DIY Assignable Button Labels.
Dymo labels for the assignable buttons on my PXW-FX9


For the labels on my FX9 I used the smallest “8” point text size and you will need to trim the labels down with a sharp pair of scissors. They need to be very small to fit in the gaps between the buttons. I found a pair of tweezers really helps to hold the label while you cut it and peel of the backing. Then you can use the tweezers to place your swanky new label exactly where you want it.

I think they look pretty good and are worth the effort. The printer I used is a Dymo Label Manager 160 and the tape is a Office Depot white on clear 12mm plastic tape. There are lots of colour choices if you don’t want clear tape. Looking at the pictures of the camera I now realise I should have taken a bit more time to get the labels straight! Fortunately you can peel them off without leaving any nasty residue or damaging the paint.

DSC_0198-3-1024x768 DIY Assignable Button Labels.
The dymo printer I used to knock up the labels.

Sony Introduces Cinema Line and teases the PXW-FX6

FX6_side_44062_02-Mid Sony Introduces Cinema Line and teases the PXW-FX6
Sony are teasing the PXW-FX6.

So there is no IBC show this year and instead Sony are doing various online sessions with the latest news as well as guides to some of the most recent products and firmware. 

Today’s news is of new branding for Sony most recent digital cinema cameras, Vence and the PXW-FX9. These cameras are now members of what Sony are calling “Cinema Line” and in addition there are pictures of a smaller camera not surprisingly called the FX6 that looks like – well – what you would expect an FS5 replacement to look like. 

In the past Sony’s digital cinematography cameras were denoted by their “Cinealta” badges. But to some extent this became somewhat confused as all sorts of cameras like the Sony EX1 and Venice were classed as Cinealta. So what exactly is the new Cinema Line?

To quote from the Sony Press Release:

“At Sony, we celebrate and have the deepest respect for filmmakers, cinematographers, and storytellers. With Cinema Line, we’re tapping into our DNA from both the film industry and digital imaging prosumer market and combining it to develop new creative tools. This line of products will enable creators to push their creative boundaries further and capture the emotion in each and every frame.” says Claus Pfeifer, Head of Connected Content Acquisition, Media Solutions, Sony Professional Europe.

So, I’m not really sure! My guess is it’s a set of products, not just cameras  aimed at what we now tend to call Cinematography rather than broadcast television or industrial video applications. Of course there is a huge amount of cross-over between all these different genres these days, so I’m sure the Cinema Line products will be used all over the place.

My main hope from this is a more unified look from any cameras in the Cinema Line. My big hope is that the FX6 will have S-Cinetone and that when you shoot S-Log3 with the FX6 that it will look like the S-log3 from the FX9 or Venice. This will make grading and post production easier where you mix and match cameras.

What about the FX6?

I don’t have any more solid information than you right now. We can expect it to be Full Frame, to shoot 10 bit 4:2:2 4K using S-Log3 and to probably have a raw output. As the FS5 is based on the A7S hardware with an F5 sensor it wouldn’t surprise me if the FX6 was based on the A7SIII hardware with the FX9 sensor perhaps. So it might have 4K at 120fps. From the pictures it appears to only have 2 channels of audio and the cover for the card slots (there must be 2 as there is a slot select switch) doesn’t look big enough for two XQD or CF Express Type B, so I would guess that like the A7SIII it’s SD cards or perhaps CF Express Type A.  Another thing I notice in the pictures is a lack of an AF/MF focus switch and in particular no menu navigation controls, so I will guess the LCD is a touch screen and it will rely on this for a lot of function control and menu navigation. But this is just speculation, so don’t hold me to any of it!!!

Don’t Upgrade FCP-X or OSX!

UPDATE 29th Sept 2020.
The issues have now been resolved so it is now safe to update.


27th Aug 2020
If you are a mac user and especially of you use it to edit footage from a Sony camera I recommend that you do not upgrade the operating system to OSX 10.15.6, Pro Video Codecs to 2.1.2 or upgrade FCP-X to version 10.4.9 at this time.

At the moment there is clearly an issue with footage from the FX9 after these updates. It is not clear whether this is due to the new Pro Video Codecs package 2.1.2  that is comes as part of the update to OSX 10.15.6 or whether it is just related to the FCP-X 10.4.9 update. Some users are reporting that some FX9 MXF files can not be previewed in Finder after updating as well as not being visible in FCP-X.

While so far it I have only seen reports that footage from the FX9 is affected, but it wouldn’t surprise me if Venice material is also affected.

I would suggest waiting for a few weeks after the release of any update before updating and never do an update half way through an important project.

UPDATE: Sony know about the issue and are working with Apple to resolve it. It only seems to affect some FX9 footage and possibly some Venice footage. It appears as the culprit is the Pro Video Codecs update, but this is yet to be confirmed. I would still suggest waiting before upgrading  even if you are using a different camera.

Don’t Panic! The A7S III didn’t just make your big pro camera obsolete.

Screenshot-2020-07-31-at-10.07.40 Don't Panic! The A7S III didn't just make your big pro camera obsolete.
Sony’s new A7S III video centric mirrorless camera.

So Sony have just launched the A7S III. And very impressive it is. Amazing low light performance, great dynamic range and lots of nice 10 bit codecs. You can even get a 16 bit raw output if you want. I can’t wait to get one. But I really don’t see the A7S III as a threat to or replacement of my FX9 or any other 4K professional video camera.

All the same discussions took place when the original A7S was launched. Sony F5 owners looked at the A7S and said – heck how can that little camera shoot full frame 4K while my camera can’t even shoot s35 4K. Why can the A7S have AF when my F3/F5 doesn’t. How can a camera that produces such beautiful images only cost 1/5th of what my F5 costs. But here we are 6 years on and the A7S and A7S II didn’t replace any of the bigger cameras and when the FS5 was launched people snapped up the FS5, often to replace an A7.

Why? Ergonomics.
 
I don’t ever want to go back to having to carry and use a big box of different ND filters for different light levels. I find the small LCD screen on the back of a DSLR to be of very limited use and while the A7S III does have a very good EVF it’s placement makes it hard to use it on a tripod or in anything other than a simple hand hold with the camera up against your face.
If you want to shoot log then you really want built in LUTs. There are the battery and power questions. How do you power the camera and accessories without needing two or more power systems or a rig to take a big external battery and a bunch of adapters? Then there’s having buttons and switches for all the frequently accessed functions. I could go on but you only have to look at the many franken-rigs that end up built around DSLR type cameras just to make them usable to see the problems. Almost always the first purchase to go with a DSLR is a cage. Why do you need a cage? Because you know your going to have to bolt a ton of stuff to that once small, portable camera to turn it into a professional video making tool.

 

Sure, I will almost certainly get an A7S III and it will be a great camera to compliment my FX9. And yes, there may even be some projects where I only take the A7S III, just as there have been shoots where I have used just my A7S. But it won’t ever replace my FX9, they are two very different tools, each with its own strengths and weaknesses.

 

The image quality gap between traditional large professional video cameras and handheld stills type cameras will continue to get smaller and smaller as electronics continue to be further miniaturised, that is inevitable, but the cameras form factor will still be important.
 
The small cars of today often have all the same bells and whistles as a large luxury car of 10 years ago. Let’s say you’ve gone on vacation (remember those?) and it’s a road trip. You get to the car rental office and you have a choice between a large, spacious, stable, less stressed car or a small car that has to work a bit harder to get you to the same place. Both will get you there, but which do you choose? There might be some instances where the small car is preferrable, perhaps you will be in a lot of narrow city streets a lot. But for most road trips I suspect most people will opt for the big comfy cruiser most of the time.

For me the A7S III will be that nippy little car, a camera that I can pop in a pocket to grab beautiful images where I can’t use a bigger camera. But for my main workhorse I don’t want fiddly, I don’t want a ton of accessories hanging off it just to make it workable. I want the luxury cruiser that will just take it all in it’s stride and get on with the job and right now that’s my FX9.

Making Sony Log Cameras Behave Like Arri Cameras When Shooting Cine EI and S-Log3.

Arri have a little trick in their cameras when shooting log to ProRes that the Sony Log cameras don’t have. When you change the Exposure Index in an Arri camera they modify the position of the exposure mid point and the shape of the Log-C gamma curve. There is actually a different Log-C curve for each EI. When you take this into post it has the benefit that the brightness at each EI will appear similar. But as the curve changes for each EI a different LUT is needed for each exposure if you want something shot at say 800EI to look the same as something shot at 200EI.

With a Sony camera the same S-Log curve is used for each Exposure Index and the LUT brightness is changed so that you end up altering the mid point of the recording as well as the highlight and shadow range. In post each EI will appear to be a different brightness. You can use the same LUT for each EI provided you do an exposure correction prior to adding the LUT or you can use dedicated offset LUT’s for each exposure.

But what you need to remember is that you are always working within a restricted recording range with either system. You can’t go darker than the black recording level or brighter than the highest value the codec can record.

If you do it in camera, as Arri do and change the log curve, at a low EI you seriously constrict the recording range (at 200 EI peak only reaches around 78IRE). This happens because at a low EI you put more light on to the sensor. So to keep the mid range looking a normal brightness in post it must be recorded at at a level that is offset downwards compared to normal. So with all the levels now offset downwards to compensate for the brighter exposure you end up recording your entire capture range with a reduced or compressed recording range. In addition to avoid clipping the blacks at a low EI the shadows are rolled off so you lose some detail and textures in the shadows. You can see the different Log-C curves in this Arri White paper.

Most people choose a low EI for 2 reasons, better signal to noise ratio and improved shadow range. The Arri method gives you the better SNR but while the dynamic range is preserved it’s recorded using less data and in particular the shadow data decreases compared to shooting at the base ISO.

Shoot at a high EI, you put less light on to the sensor. So to maintain similar looking mids in post everything has to be recorded at a higher level. Now you have a problem because the highlights will extend beyond the upper limits of the recording range so  Arri have to add a highlight roll off at the top of the Log-C curve. This can present some grading challenges as the curve is now very different to regular Log-C. In addition the highlights are compressed.

Most people choose to shoot at a high EI to extend the highlight range or to work in lower light levels.

The latter is a bit of a pointless exercise with any log camera as the camera sensitivity isn’t actually any different, you are only fooling yourself into thinking it’s is more sensitive and this can result in noisy footage. If you using a high EI to extend the highlight range then really the last thing you want is the extra highlight roll off that Arri have to add at 3200 EI to fit everything in.

One thing here in Arri’s favour is that they can record 12 bit ProRes 444. 12 bits helps mitigate the compressed recording range of low EI’s provided the post workflow is managed correctly.

The beauty of the Sony method is the recording range never changes, so low EI’s and brighter recordings deliver better shadow ranges with more data in the shadows and mids and high EI’s with darker recordings deliver better highlight ranges with no additional data restrictions or additional roll-offs giving the cinematographer more control to choose the exposure mid point without compromise to the data at either end.

But it does mean that post need to be awake and that the shooter needs to communicate with post regarding the brighter/darker looking images. But to be honest if post don’t understand this and recognise what you have done either buy just looking at the footage or checking the metadata what chance is there of post actually doing a decent job of grading your content? This should be fundamental and basic stuff for a colourist/grader. For a colourist/grader to not understand this and how to work with this is like hiring a camera operator that doesn’t know what an ND filter is.

The Sony FS7/FX9/F5/F55/Venice cameras can do something similar to an Arri camera by baking in the S-Log3 LUT. Then in post the exposure will look the same at every EI. BUT you will lose some highlight range at a low EI’s and some shadow range at a high EI’s without gaining any extra range at the opposite end. As a result the total dynamic range does  reduce as you move away from the base ISO.

In addition on the Venice, FS7/F5/F55 (and I suspect in a future update the FX9) you can bake in a user LUT to the SxS recordings. If you  create a set of S-Log3 to S-Log3 LUT’s with EI offsets included in the LUT you could replicate what Arri do by having an offset and tweaked S-Log3 User LUT for each EI that you want to shoot at. You would not use the cameras EI control you would leave the camera st the base ISO. The LUT’s themselves will include the exposure offset. These will maintain the full dynamic range but just like Arri they will  need to roll off the shadows or highlights within the LUT.

But monitoring will be tricky as you won’t have the benefit of a 709 type LUT for monitoring so you you may need to use an external monitor or viewfinder that can apply a LUT to it’s image. The good news is the same LUT would be used in the monitor for every version on the offset S-Log3 LUT that you are baking in as the exposure brightness levels will be the same for each offset.

So here you are a set of 4 S-Log3/S-Gamut3.cine offset LUT’s for those Sony cameras that will take a user LUT. I have named the LUT’s – 2S Down SL3C, 1S Down SL3C,  1S UP SL3C, 2S UP SL3C.

The name means (Number of Stops) (Down or Up) (Slog3.Cine).

So if the cameras base ISO is 2000 (F5/FS7 etc) and you want to shoot at the equivalent of 1000EI, which is 1 stop down from base you would use “1S Down SL3C”.

As always (to date at least) I offer these as a free download available by clicking on the links below.  But I always appreciate a contribution if you find them useful and make use of them. I will let you pay what you feel is fair, all contributions are greatly appreciated and it really does help keep this website up and running. If you can’t afford to pay, then just download the LUT’s and enjoy using them. If in the future you should choose to use them on a paying project, please remember where you got them and come back and make a contribution. More contributions means more LUT offerings in the future.

Please feel free to share a link to this page if you wish to share these LUT’s with anyone else or anywhere else. But it’s not OK to to share or host these on other web sites etc.

Here’s the link to download my offset S-Log3 Camera LUTs

To make a contribution please use the drop down menu here, there are several contribution levels to choose from.


Your choice:



pixel Making Sony Log Cameras Behave Like Arri Cameras When Shooting Cine EI and S-Log3.

S709 LUT (Venice Look) And 709(800) For LEGAL RANGE PRORES S-Log3 On Atomos and other Recorders.

As noted in my previous post there can be some issues with the way ProRes is recorded on many external monitors as a legal range files rather than Data Range.

Another side effect of this is that LUT’s designed for post production as well as most camera LUT’s don’t work correctly in the monitor. So even when you apply the same LUT in the camera as in the monitor the images look different.

To address this I am providing here 2 sets of LUTs for S-Log3 and SGamut3.cine designed to match the built in s709 and 709(800) Luts included in many Sony cameras. These LUTs are specifically for external recorders and should not be used in camera. When you use these LUT’s the pictures on the monitor should now match the the images in the cameras viewfinder when the built in  LUT has been applied.

You will find 3 LUTs of each type. One for the base exposure, one for footage exposed 1 stop brighter (minus1) and one for footage exposed 2 stops brighter than base (minus2).

As always (to date at least) I offer these as a free download available by clicking on the links below. Try them before you decide then pay what you feel is fair. All contributions are greatly appreciated and it really does help keep this website up and running. If you can’t afford to pay, then just download the LUT’s and enjoy using them, tell your friends and send them here. If in the future you should choose to use them on a paying project, please remember where you got them and come back and make a contribution. More contributions means more LUT offerings in the future.

Click Here to download the 709(800) and S709 Legal In LUTS for external recorders.

If you want to share the LUT’s please do so by a link to this page. You may not sell or distribute these LUTs anywhere without my prior consent.

To make a contribution please use the drop down menu here, there are several contribution levels to choose from.


Your choice:



pixel S709 LUT (Venice Look) And 709(800) For LEGAL RANGE PRORES S-Log3 On Atomos and other Recorders.

Struggling With Blue LED Lighting? Try Turning On The adaptive Matrix.

It’s a common problem. You are shooting a performance or event where LED lighting has been used to create dramatic coloured lighting effects. The intense blue from many types of LED stage lights can easily overload the sensor and instead of looking like a nice lighting effect the blue light becomes an ugly splodge of intense blue that spoils the footage.

Well there is a tool hidden away in the paint settings of many recent Sony cameras that can help. It’s called “adaptive matrix”.

When adaptive matrix is enabled, when the camera sees intense blue light such as the light from a blue LED light, the matrix adapts to this and reduces the saturation of the blue colour channel in the problem areas of the image. This can greatly improve the way such lights and lighting look. But be aware that if trying to shoot objects with very bright blue colours, perhaps even a bright blue sky, if you have the adaptive matrix turned on it may desaturate them. Because of this the adaptive matrix is normally turned off by default.

If you want to turn it on, it’s normally found in the cameras paint and matrix settings and it’s simply a case of setting adaptive matrix to on. I recommend that when you don’t actually need it you turn it back off again.

Most of Sony’s broadcast quality cameras produced in the last 5 years have the adaptive matrix function, that includes the FS7, FX9, Z280, Z450, Z750 and many others.

Catalyst Browse and Prepare V2019.2 Released. Includes support for FX9 Image STABILISATION.

Sony have just released the latest version of their free viewing, copying  and transcoding software Catalyst Browse and the more fully featured paid software Catalyst Prepare. These new versions includes support for the PXW-FX9’s metadata based image stabilisation. Hopefully the new Mac versions are also optimised for Catalina.

You can download Browse from here: https://www.sonycreativesoftware.com/de/download/catalystbrowse

And Prepare from here: https://www.sonycreativesoftware.com/de/download/catalystprepare

If you have an AXS-AR1, you need to update the firmware.

A firmware bug has been identified with the Sony AXS-AR1 AXS and SXS card reader that can result in the corruption of the data on a card when performing concurrent data reads. To ensure this does not happen you should update the firmware of your AXS-AR1 immediately. 

For more information please see the post linked below on the the official Sony Cine website where you will find instructions on how to perform the update and where to download the necessary update files.

https://sonycine.com/articles/sony-axs-ar1-firmware-update—do-this-now/

Sony’s Internal Recording Levels Are Correct.

There is a video on YouTube right now where the author claims that the Sony Alpha cameras don’t record correctly internally when shooting S-Log2 or S-Log3. The information contained in this video is highly miss-leading and the conclusion that the problem is with the way Sony record internally is incorrect. There really isn’t anything wrong with the way Sony do their recordings. Neither is there anything wrong with the HDMI output. While centered around the Alpha cameras the information below is also important for anyone that records S-Log2 or S-log3 externally with any other camera.

Some background: Within the video world there are 2 primary ranges that can be used to record a video signal.

Legal Range uses code value 16 for black and code value 235 for white (anything above CV235 is classed as a super-white and these can still be recorded but considered to be beyond 100%).

Full or Data Range uses code value 0 for black and code value 255 for white or 100%.

Most cameras and most video systems are based on legal range. ProRes recordings are almost always legal range. Most Sony cameras use legal range and do include super-whites for some of the curves such as Cinegammas or Hypergammas to gain a bit more dynamic range. The vast majority of video recordings use legal range. So most software defaults to legal range.

But very, very importantly – S-log2 and S-log is always full/data range.

Most of the time this doesn’t cause any issues. When you record internally in the camera the internal recordings have metadata that tells the playback, editing or grading software that the S-Log files have been recorded using full range. Because of this metadata the software will play the files back and process them at the correct levels. However if you record the S-Log with an external recorder the recorder doesn’t always know that what it is getting is full range and not legal range, it just records it, as it is, exactly as it comes out of the camera. That then causes a problem later on because the externally recorded file doesn’t have the right metadata to ensure that the full range S-Log material is handled correctly and most software will default to legal range if it knows no different.

Lets have a look at what happens when you import an internally recorded S-Log2 .mp4 file from a Sony A7S into Adobe Premiere:

Screenshot-2019-03-01-at-10.04.22 Sony's Internal Recording Levels Are Correct.
Internal S-Log2 in Premiere.

A few things to note here. One is Adobe’s somewhat funky scopes where the 8 bit code values don’t line up with the normally used IRE values used for video productions. Normally 8 bit code value 235 would be 100IRE or 100%, but for some reason Adobe have code value 255 lined up with 100%. My suspicion is that the scope % scale is not video % or IRE but instead RGB%. This is really confusing. A further complication is that Adobe have code value 0 as black, again, I think, but am not sure that this is RGB code value 0. In the world of video Black should be code value 16. But the scopes appear to work such that 0 is black and that 100 is full scale video out. Anything above 100 and below 0 will be clipped in any file you render out.

Looking at the scopes in the screen grab above, the top step on the grey scale chart is around code value 252. That is the code value you would expect it to be, that lines up just nicely with where the peak of an S-Log2 recording should be. This all looks correct, nothing goes above 100 or below 0 so nothing will be clipped.

So now lets look at an external ProRes recording, recorded at exactly the same time as the internal recording and see what Premier does with that:

Screenshot-2019-03-01-at-10.05.32 Sony's Internal Recording Levels Are Correct.
External ProRes in Adobe Premiere

OK, so we can see straight away something isn’t quite right here. In an 8 bit recording it should be impossible to have a code value higher that 255, but the scopes are suggesting that the recording has a peak code value of something around CV275. That is impossible, so alarm bells should be ringing. Something is not quite right here. In addition the S-Log2 appears to be going above 100, so that means if I were to simply export this as a new file, the top of the recording will be clipped and it won’t match the original. This is very clearly not right.

Now lets take a look at what happens in Adobe Premiere when you apply Sony’s standard S-Log2 to Rec-709 LUT to a correctly exposed internal recording:

Screenshot-2019-03-01-at-10.10.05 Sony's Internal Recording Levels Are Correct.
Internal S-Log2 with 709 LUT applied.

This all looks good and as expected. Blacks are sitting down just above the 0 line (which I think we can safely assume is black) and the whites of the picture are around code value 230 or 90, whatever that means. But they are certainly nice and bright and are not in the range that will be clipped. So I can believe this as being more or less correct and as expected.

So next I’m going to add the same standard LUT to the external recording to see what happens.

Screenshot-2019-03-01-at-10.11.24 Sony's Internal Recording Levels Are Correct.
External S-Log2 with standard 709 LUT applied.

OK, this is clearly not right. Our blacks now go below the 0 line and they look clipped. The highlights don’t look totally out of place, but clearly there is something going very, very wrong when we this normal LUT to this correctly exposed external recording. There is no way our blacks should be going below zero and they look crushed/clipped. The internal recording didn’t behave like this. So what is going on with the external recording?

To try and figure this out lets take a look at the same files in DaVinci Resolve. For a start I trust the scopes in Resolve much more and it is a far better programme for managing different types of files. First we will look at the internal S-Log2 recording:

Screenshot-2019-03-01-at-10.21.17-1 Sony's Internal Recording Levels Are Correct.
Internal S-Log2, all looks good.

Once again the levels of the internal S-Log2 recordings look absolutely fine. Our peak is around code value 1010 which would be 252 in 8 bit. Right where the brightest bits of an S-log2 file should be. Now lets take a look at the external recording.

Screenshot-2019-03-01-at-10.22.51 Sony's Internal Recording Levels Are Correct.
External ProRes S-Log2 (Full Range)

If you compare the two screen grabs above you can see that the levels are exactly the same. Our peak level is around CV1010/CV252, just where it should be and the blacks look the same also. The internal and external recordings have the same levels and look the same. There is no difference (other then perhaps less compression and fewer artefacts in the ProRes file). There is nothing wrong with either of these recordings and certainly nothing wrong with the way Sony record S-Log2 internally. This is absolutely what I expect to see.

BUT – I’ve been a little bit sneaky here. As I knew that the external recording was a full range recording I told DaVinci Resolve to treat it as a full range recording. In the media bin I right clicked on the clip and under “clip attributes” I changed the input range from “auto” to “full”. If you don’t do this DaVinci Resolve will assume the ProRes file to be legal range and it will scale the clip incorrectly in the same way as Premiere does. But if you tell Resolve the clip is full range then it is handled correctly.

This is what it looks like if you allow Resolve to guess at what range the S-Log2 full range clip is by leaving the input range setting to “auto”:

Screenshot-2019-03-01-at-10.24.46 Sony's Internal Recording Levels Are Correct.
External ProRes S-Log2 Auto Range

In the above image we can see how in Resolve the clip becomes clipped because in a legal range recording anything over CV235/CV940 would be an illegal super white. Resolve is scaling the clip and pushing anything in the original file that was above CV235/CV940 off the top of the scale. The scaling is incorrect because Resolve doesn’t know the clip is supposed to be full range and therefore not scaled. If we compare this to what Premiere did with the external recording it’s actually very similar. Premiere also scaled the clip, only Premiere will show all those “illegal” levels above it’s 100 line instead of clipping then as Resolve does. That’s why Premiere can have those “impossible” 8 bit code values going up to CV275.

Just to be complete here, I did also test the internal .mp4 recordings in Resolve switching between “auto” and “full” range and in both cases the levels stayed exactly the same. This shows that Resolve is correctly handling the internally record full range S-Log as full range.

What about if you add a LUT? Well you MUST tell Resolve to treat the S-Log2 ProRes clip as a full range clip otherwise the LUT will not be right, if your footage is S-Log3 you also have to tell Resolve that it is full range:

Screenshot-2019-03-01-at-13.09.16 Sony's Internal Recording Levels Are Correct.
Resolve: Internal recording with the standard 709 LUT applied, all is exactly as expected. Deep shadows and white right at the top of the range.
Screenshot-2019-03-01-at-13.10.10 Sony's Internal Recording Levels Are Correct.
Resolve: External recording with the standard 709 LUT applied, clip input range set to “full”. Everything is once again as you would expect. Deep shadows and white at the top of the range. Also not that it is near perfect match to the internal recording. No hue or color shift (Premiere introduces a color shift, more on that later).
Screenshot-2019-03-01-at-13.14.02 Sony's Internal Recording Levels Are Correct.
Resolve: External recording with the standard 709 LUT applied, clip input range set to “auto”. This is clearly not right. The highlights are clipped and the blacks are crushed and clipped. It is so important to get the input range right when working with LUT’s!!

CONCLUSIONS:

Both the internal and external recordings are actually exactly the same. Both have the same levels, both use FULL range. There is absolutely nothing wrong with Sony’s internal recordings. The problem stems from the way most software will assume that the ProRes files are legal range. But if it’s an S-Log2 or S-Log3 recording it will in fact be full (data) range. Handling a full range clip as legal range means that highlights will be too high/bright or clipped and blacks will be crushed. So it’s really important that your software handles the footage correctly. If you are shooting using S-Log3 this problem is harder to spot as S-Log3 has a peak recording level that is well with the legal range, so you often won’t realise it’s being scaled incorrectly as it won’t necessarily look clip. If you use LUT’s and your ProRes clips look crushed or highlights look clipped you need to check that the input scaling is correct. It’s really important to get this right.

Why is there no difference between the levels when you shoot with a Cinegamma? Well when you shoot with a cinegamma the internal recordings are legal range so the internal recordings get treated as legal range and so do the external recordings, so they don’t appear to be different (In the YouTube video that led to this post the author discovers that if you record with a normal profile first and then switch to a log profile while recording the internal and external files will match. But this is because now the internal recording has the incorrect metadata, so it too gets scaled incorrectly, so both the internal and external files are now wrong – but the the same).

Once again: There is nothing wrong with the internal recordings. The problem is with the way the external recordings are being handled. The external recordings haven’t been recorded incorrectly, they have been recorded as they should be. The problem is the edit software is incorrectly interpreting the external recordings. The external recordings don’t have the necessary metadata to mark the files as full range because the recorder is external to the camera and doesn’t know what it’s being sent by the camera. This is a common problem when using external recorders.

What can we do in Premiere to make Premiere work right with these files?

You don’t need to do anything in Premiere for the internal .mp4 recordings. They are handled correctly but Premiere isn’t handling the full/data range ProRes files correctly.

My approach for this has always been to use the legacy fast color corrector filter to transform the input range to the required output range. If you apply the fast color corrector filter to a clip you can use the input and output level sliders to set the input and output range. In this case we need to set the output black level to CV16 (as that is legal range black) and we need to set output white to CV235 to match legal range white. If you do this you will then see that the external recording appears to have almost exactly the same values as the internal recording. However there is some non-linearity in the transform, it’s not quite perfect. So if anyone knows of a better way to do this do please let me know.

Screenshot-2019-03-01-at-11.04.04 Sony's Internal Recording Levels Are Correct.
Using the legacy “fast color corrector” filter to transform the external recording to the correct range within Premiere.

Now when you apply a LUT the picture and the levels are more or less what you would expect and almost identical to the internal recordings. I say almost because there is a slight hue shift. I don’t know where the hue shift comes from. In Resolve the internal and external recordings look pretty much identical and there is no hue shift. In Premiere they are not quite the same. The hue is slightly different and I don’t know why. My recommendation – use Resolve, it’s so much better for anything that needs any form of grading or color correction.