Category Archives: PXW-FX9

Base ISO Levels for the FX9

First of all. Unless you are actually using a lightmeter to determine your exposure, in custom mode it is far, far easier to use dB of gain. 0dB is always optimum and each time you go up 6dB the picture gets twice as bright (one stop brighter) and the noise doubles. ISO is in most cases nothing more than a rating to use in conjunction with a lightmeter to get the right picture brightness, it will not tell you how much noise you have or whether the camera is at it’s optimum setting. So don’t use ISO just because “ISO is cool and make me sound like I know what I’m doing, it makes me a cinematographer”. This isn’t a film camera, no matter how much you dress it up it is a video camera and dB tells you exactly what it is doing.

Because different gamma curves produce different brightness images the ISO rating will change depending on the gamma curve being used, this isn’t a sensitivity change, it’s an optimum brightness change. Because of this, even when you are at 0dB gain (the native setting) when you switch between different gammas the ISO rating changes. In addition because you have two different base sensitivity modes on the FX9 there are a lot of different base ISO’s (all of which are 0dB gain). I’ve prepared a table of the different base ISO’s.

Screenshot-2019-12-30-at-11.00.53-1024x295 Base ISO Levels for the FX9

In addition if you are not careful it’s possible to end up using too much gain to achieve a certain ISO as many ISO ratings can be realised at both Hi and Low Base sensitivity. You don’t want to be at 2500 ISO in Low Base for example, you would be better off using High base. The table below should help you understand when to switch up to High base from Low base. If you use dB gain, then it’s easy. More than +11dB – switch up. Don’t forget in dB mode you can also go down to -3dB.

Screenshot-2019-12-30-at-12.26.58-1024x342 Base ISO Levels for the FX9

Advertisements

Core FX9 V-Mount Adapter and Core Hypercore Neo Mini Batteries.

DSC_0691-2-1024x768 Core FX9 V-Mount Adapter and Core Hypercore Neo Mini Batteries.
Core FX9 V-Mount adapter with a Hypercore Neo Mini battery on my PXW-FX9

One of the things about the FX9 that makes no sense is it’s external DC input. When you are using just the camera body the FX9 requires a rather odd-ball 19.5 volts to power it via it’s DC in connector. Most cameras have a 12v to 16v input range so they can be used with the multitude of V-Mount or Gold Mount batteries that are common place in the world of professional video. But not the FX9.  The FX9 is also fairly power hungry so the standard BP-U batteries can be a little limiting, especially if you also need to power any accessories as the camera doesn’t have a power output. A V-Mount battery will run the camera for a long time and they generally have D-Tap power outlets, but they are the wrong voltage for the FX9s external input. So if you want to use a V-Mount battery, as I do, then you need not only a mounting plate but also a voltage converter.

The adapter I have chosen to use is manufactured by Core. Why this one? One thing that was important for me is not only to be able to power the camera from a V-Mount battery, but also to be able to power it from a standard external 12 volt power supply such as found in most studios, or something like a car battery. The Core CXV-FX9 adapter includes a voltage regulator that takes the 12 to 16 volt range of a typical Lithium battery and converts it to the 19.5v needed by the FX9. It also has an industry standard 4 pin XLR connector that you can use to power the camera from a 12v external power supply.

DSC_0681-1024x768 Core FX9 V-Mount Adapter and Core Hypercore Neo Mini Batteries.
The Core FX9 V-Mount adapter has an industry standard 4 pin XLR input for standard 12v power supplies.

Hot Swap:

If you have a power supply connected to the 4 pin XLR you can hot swap the V-Mount batteries. If you have a battery on the adapter you can hot swap to and from the external power. During hot swapping the adapter not only continues to feed the camera with power but also the 2 D-Tap ports on the adapter remain powered.

Low Battery Warning:

One issue that all these adapters have is that they have to convert the battery voltage up to 19.5 volts and this is what is fed to the cameras DC in connector. This means that the camera has no direct connection to the battery, so it has no way to know the charge state of the battery. All you will see in the viewfinder as an indication of the output of the voltage converter. This will remain at a constant 19.5v all the way until the battery is flat and cuts off, at which point the camera will just die. That’s not good, if you are halfway through recording something it could corrupt your media. You won’t have any warning in the camera of the battery going flat.

To try to address this at least in part the Core adapter has an LED light on the operators side that is green when the battery is well charged, but turns to red when there is only around 10% of the batteries capacity left. This does at least give some warning of a battery about to die.

DSC_0689-1024x768 Core FX9 V-Mount Adapter and Core Hypercore Neo Mini Batteries.
The Core FX9 adapter has an LED battery status indicator that turns red and flashes when the battery voltage gets low.

As well as the adapter, I’m trying out a couple of Core’s Hypercore Neo Mini batteries. These are nice, compact 98Wh batteries. They are UN Tested and certified so meet all the requirements for air travel. These batteries have a clever LCD display that displays the available run time of the battery. This is much more advanced than a simple charge indicator (it has one of those too). The battery actually detects the load being drawn from it. It also knows the exact state of charge of the battery.

DSC_0680-1024x768 Core FX9 V-Mount Adapter and Core Hypercore Neo Mini Batteries.
Core SWX Hyoercore Neo Mini 98Wh battery with incredibly accurate run time display giving the time in minutes until the battery will be flat based on the cameras power draw.

Using these it is able to calculate with great accuracy how long it will be before it will be flat. I have found this to be remarkably accurate, typically to within just a few minutes. I’ve been using this display to let me know when I need to start thinking about changing the battery. It’s accuracy gives me the confidence to continue shooting until I’m down to the last few minutes of run time. Typically I’m getting around 2.5 hours without the Atomso Ninja recorder and just under 2 hours with the Ninja from one of these excellent little batteries.

DSC_0666-scaled-e1578517846130-955x1024 Core FX9 V-Mount Adapter and Core Hypercore Neo Mini Batteries.
Core V-Mount plate for the FX9 showing the lugs that lock into slots in the camera battery compartment to eliminate any flex or wobble.
DSC_0686-scaled-e1578517993169-1024x935 Core FX9 V-Mount Adapter and Core Hypercore Neo Mini Batteries.
There are two D-Tap power outlets at the top of the Core FX9 V-Mount plates as well as 3 1/4″ mounting holes for accessories.

Attaching the adapter:

Attaching the adapter to the camera is easy. It uses the same mounting points as Sony’s XDCA extension unit. So there are lugs that slide into slots inside the FX9’s battery compartment as well as two small bolts that attach it to the top of the camera. This makes it incredibly secure with no wobble or other movement. I would have no concerns about supporting the entire camera rig from the battery adapter or adding perhaps a V-Mount wireless video link and then large or heavy batteries behind that. It’s very secure and it looks like it’s meant to be there. Another nice touch is that as well as the 2 D-Tap power ports on the top of the adapter there are also 3 additional 1/4″ mounting points for accessories such as monitors or wireless receivers etc.

I do have one small criticism. The position of the D-Tap ports is quite close to the edge of the adapter. If you are using a tall battery and you have a very fat D-Tap plug they can interfere with each other.

Despite this the Core V-Mount battery adapter gets a big thumbs up from me. The voltage indication is most useful as is the ability to use a normal 4 pin 12v XLR feed.

DSC_0684-2-1024x768 Core FX9 V-Mount Adapter and Core Hypercore Neo Mini Batteries.
The Core FX9 V-Mount battery adapter gets a big thumbs up from me.

PXW-FX9 Launch Event In Dubai. This Is Going To Be Fun!

FX9-Dubai-576x1024 PXW-FX9 Launch Event In Dubai. This Is Going To Be Fun!Really excited about this PXW-FX9 event in Dubai on the 14th of January at 5pm. Garage Studios are  building us 3 amazing film sets full of props, great actors with great period costumes. This won’t be a PowerPoint presentation, we will shoot a short film, grade the material, showing all the FX9’s key features. It will challenge the camera. It will probably challenge me! It will be fun, you will be surprised. I’m not going to reveal the film subject yet, so come join us if you can.

For a little insight into what we are planning – it won’t be this but it’s similar – Here’s a video of a previous Sony event at Garage Studio: https://www.facebook.com/watch/?v=716820215493428

New s709 LUT For The FX9 That’s Less Green Than The Sony LUT.

Many users of the FX9 that have been shooting S-Log3 are finding that when they add the standard Sony version of the s709 LUT that their pictures have a slight green tint. I believe that this is because originally the s709 LUT was designed for the Sony Venice camera and the FX9 is very slightly different.  I recently created an experimental LUT to minimise this tint but some people found this tended to push some images slightly magenta.

So I now have a new version of the LUT which really does help combat the green tint. The difference between this LUT and Sony’s original s709 LUT is very small. The idea isn’t to create a new look, just to help get rid of the tint. So you won’t see a big difference, it’s subtle, but I think it really is better.

Click Here to download the ACs709 For FX9 LUT set.

Note: These LUTs are for S-Log3 and SGamut3.cine from the FX9. As usual I have include different versions of the LUT. There are 65x LUT’s suitable for grading as well as 33x LUT’s for monitors or grading software that doesn’t support the higher quality 65x LUTs. There are also minus1 and minus2 LUTS that have 1 and 2 stop exposure shifts for footage that has been shot brighter than the base exposure. In addition I have include the same LUTs but with Legal range input levels for use on Atomos and other recorders that record ProRes in using Legal Range.

Please feel free to share a link to this page if you wish to share these LUT’s with anyone else or anywhere else. But only share via a link to this page please.

If you find these LUT’s useful please consider buying me a coffee or other drink. To make a contribution please use the drop down menu here, there are several contribution levels to choose from.


 

Your choice:



pixel New s709 LUT For The FX9 That's Less Green Than The Sony LUT.

S709 LUT (Venice Look) And 709(800) For LEGAL RANGE PRORES S-Log3 On Atomos and other Recorders.

As noted in my previous post there can be some issues with the way ProRes is recorded on many external monitors as a legal range files rather than Data Range.

Another side effect of this is that LUT’s designed for post production as well as most camera LUT’s don’t work correctly in the monitor. So even when you apply the same LUT in the camera as in the monitor the images look different.

To address this I am providing here 2 sets of LUTs for S-Log3 and SGamut3.cine designed to match the built in s709 and 709(800) Luts included in many Sony cameras. These LUTs are specifically for external recorders and should not be used in camera. When you use these LUT’s the pictures on the monitor should now match the the images in the cameras viewfinder when the built in  LUT has been applied.

You will find 3 LUTs of each type. One for the base exposure, one for footage exposed 1 stop brighter (minus1) and one for footage exposed 2 stops brighter than base (minus2).

As always (to date at least) I offer these as a free download available by clicking on the links below. Try them before you decide then pay what you feel is fair. All contributions are greatly appreciated and it really does help keep this website up and running. If you can’t afford to pay, then just download the LUT’s and enjoy using them, tell your friends and send them here. If in the future you should choose to use them on a paying project, please remember where you got them and come back and make a contribution. More contributions means more LUT offerings in the future.

Click Here to download the 709(800) and S709 Legal In LUTS for external recorders.

If you want to share the LUT’s please do so by a link to this page. You may not sell or distribute these LUTs anywhere without my prior consent.

To make a contribution please use the drop down menu here, there are several contribution levels to choose from.


Your choice:



pixel S709 LUT (Venice Look) And 709(800) For LEGAL RANGE PRORES S-Log3 On Atomos and other Recorders.

ACS Technical Panel Review The PXW-FX9

The ACS have produced a video report about some of the testing that they did with a pre-production FX9. It’s quite a long video but has some interesting side by side comparisons with the FS7 which we all already know very well. You’ve heard much of what’s in the video from me already, but I’m a Sony guy, so it’s good to hear the same things from the much more impartial ACS.

With my super geek hat on it was really interesting to see the colour response tests performed by Pawel Achtel ACS at 37.08. These tests use a very pure white light source that is split into the full spectrum and then the monochromatic light is projected onto the sensor. It’s a very telling test. I was quite surprised to see how large the FS7’s response is, it’s not something I have ever had the tools to measure. The test also highlights a lack of far red response from the FS7. It’s not terrible, but does help explain why warm skin tones perhaps don’t always look as nice as they could. I do wonder if this is down to the characteristics of the cameras IR cut filter as we also know the sensor to be quite sensitive to IR. The good news is that the PXW-FX9 has what Pawel claims to be the best colour accuracy of any camera he’s tested, and he’s tested pretty much all of the current cinema cameras. Take a look for yourself.

Sony FX9 ACS Roundtable from ACS on Vimeo.

More on the PXW-FX9’s Scan Modes.

Scan Modes

The PXW-FX9 features a 6K Full Frame sensor. With this sensor it is possible to select various scan modes and frame sizes. It is important to understand what these mean and which scan modes can be used with which frame rates and recording formats.

There are two selectable frame sizes, Full Frame (FF) and Super 35 (s35). Full Frame is the larger of the two sensor scan sizes. When Full Frame is selected the sensor area is similar to that of a Full Frame photo camera. In the Full Frame mode you will need to use lenses designed for Full Frame. The frame size in Full Frame scan mode is also similar to the VistaVision film format.

In the Super 35mm mode a reduced area of the sensor is used that is of a similar size to a frame of super 35mm movie film. In this mode you can use lenses designed for APS-C, Super 35mm movie film as well as lenses designed for Full Frame cameras. If you use a Full Frame lens in the Super35 scan mode the field of view will be narrower than it would be in the Full Frame mode by a factor of 1.5.

FF 6K Scan is the highest quality scan mode available in the FX9. The sensor operates in the Full Frame format and a full 6K scan is used, reading 19 million pixels from the sensor. The 6K image is then downsampled to UHD (or HD) for recording. By starting at 6K and downsampling the quality of the UHD recordings will be higher than possible from a 4K scan. Noise in the image is reduced and the resolution and colour sampling is maximised. However there are some frame rate limitations in FF 6K scan. The highest frame rate that can be selected when using FF 6K scan is 30 frames per second. You can record either UHD or HD from FF 6K scan.

FF 2K scan, optimised for speed, quality is reduced. Uses the same Full Frame sized sensor area as FF 6K. However, the sensor is read at 2K instead of 6K. The reduced resolution allows the sensor to be read out much faster, currently up to 120fps. However in this mode the cameras optical filtering is less optimum and this means that the image quality is somewhat reduced compared to the FF 6K scan. This scan mode is best suited to high frame rate shooting where the ability to shoot at a high frame rate is the main priority. You can only record HD from FF 2K scan. I recommend FF 2K is only used for 120fps recording.

S35 4K Medium Balance of Quality and Speed.  In this mode 4K of pixels are read out. This is similar to the scan area and number of pixels of a PXW-FS7 or FS5. As a result the resolution of the recordings will be similar to that of other 4K s35 cameras. Because there is no downsampling in this mode the image quality is not quite as high as can be achieved from the FF 6K scan mode. But the reduced number of pixels that need to be read means that the S35 4K scan can be used at frame rates up to 60fps. You can record either UHD or HD from s35 4K scan.

S35 2K scan optimised for speed with s35 or APS-C lenses, quality is reduced. As above uses the smaller Super 35mm frame area. However, the sensor is read at 2K instead of 4K. The reduced resolution allows the sensor to be read out much faster. The FF 2K scan mode can operate at up to 120fps. In  this mode the cameras optical filtering is less than optimum and this means that the image quality is somewhat reduced compared to the FF 6K or S35 4K scan. This scan mode is best suited to high frame rate shooting where the ability to shoot at a high frame rate is the main priority and only Super 35mm or APS-C lenses are available. You can only record HD from S35 2K scan and I recommend you only use the mode when you need to shoot 120fps with a s35 or APS-C lens.

What’s So Magical About Full Frame – Or Is It all Just ANOTHER INTERNET MYTH?

FIRST THINGS FIRST:
The only way to change the perspective of a shot is to change the position of the camera relative to the subject or scene.  Just put a 1.5x wider lens on a s35camera and you have exactly the same angle of view as a Full Frame camera. It is an internet myth that Full Frame changes the perspective or the appearance of the image in a way that cannot be exactly replicated with other sensor or frame sizes. The only thing that changes perspective is how far you are from the subject. It’s one of those laws of physics and optics that can’t be broken. The only way to see more or less around an object is by changing your physical position.

The only thing changing the focal length or sensor size changes is magnification and you can change the magnification either by changing sensor size or focal length and the effect is exactly the same either way. So in terms of perspective, angle of view or field of view an 18mm s35 setup will produce an identical image to a 27mm FF setup. The only difference may be in DoF depending on the aperture where  f4 on FF will provide the same DoF as f2.8 on s35. If both lenses are f4 then the FF image will have a shallower DoF.

Again though physics play a part here as if you want to get that shallower DoF from a FF camera then the lens FF lens will normally need to have the same aperture as the s35 lens. To do that the elements in the FF lens need to be bigger to gather twice as much light so that it can put the same amount of light as the s35 lens across the twice as large surface area of the FF sensor.  So generally you will pay more for a comparable FF like for like aperture lens as a s35 lens. Or you simply won’t be able to get an equivalent in FF because the optical design becomes too complex, too big, too heavy or too costly.
This in particular is a big issue for parfocal zooms. At FF and larger imager sizes they can be fast or have a big zoom range, but to do both is very, very hard and typically requires some very exotic glass. You won’t see anything like the affordable super 35mm Fujinon MK’s in full frame, certainly not at anywhere near the same price. This is why for decades 2/3″ sensors and 16mm film before that, ruled the roost for TV news as lenses with big zoom ranges and large fast apertures were relatively affordable.
Perhaps one of the commonest complaints I see today with larger sensors is “why can’t I find an affordable fast, parfocal zoom with more than a 4x zoom range”. Such lenses do exist, for s35 you have lenses like the $22K Canon CN7 17-120mm  T2.9, which is pretty big and pretty heavy. For Full Frame the nearest equivalent is the more expensive $40K Fujinon Premista 28-100 t2.9. which is a really big lens weighing in at almost 4kg. But look at the numbers: Both will give a very similar AoV on their respective sensors at the wide end but the much cheaper Canon has a greatly extended zoom range and will get a tighter shot than the Premista at the long end. Yes, the DoF will be shallower with the Premista, but you are paying almost double, it is a significantly heavier lens and it has a much reduced zoom ratio. So you may need both the $40K Premista 28-100 and the $40K Premista 80-250 to cover everything the Canon does (and a bit more). So as you can see, getting that extra shallow DoF may be very costly. And it’s not so much about the sensor, but more about the lens.
The History of large formats:
It is worth considering that back in the 50’s and 60’s we had VistaVision, a horizontal 35mm format the equivalent of 35mm FF, plus 65mm and a number of other larger than s35 formats. All in an effort to get better image quality.
VistaVision (The closet equivalent to 35mm Full Frame).
VistaVision didn’t last long, about 7 or 8 years because better quality film stocks meant that similar image quality could be obtained from regular s35mm film and shooting VistaVision was difficult due to the very shallow DoF and focus challenges, plus it was twice the cost of regular 35mm film. It did make a brief comeback in the 70’s for shooting special effects sequences where very high resolutions were needed. VistaVision was superseded by Cinemascope which uses 2x Anamorphic lenses and conventional vertical super 35mm film and Cinemascope was subsequently largely replaced by 35mm Panavision (the two being virtually the same thing and often used interchangeably).
65mm formats.
 At around the same time there were various 65mm (with 70mm projection) formats including Super Panavision, Ultra Panavision and Todd-AO These too struggled and very few films were made using 65mm film after the end of the 60’s. There was a brief resurgence in the 80’s and again recently there have been a few films, but production difficulties and cost has meant they tend to be niche productions.
Historically there have been many attempts to establish mainstream  larger than s35 formats. But by and large audiences couldn’t tell the difference and even if they did they wouldn’t pay extra for them. Obviously today the cost implication is tiny compared to the extra cost of 65mm film or VistaVision. But the bottom line remains that normally the audience won’t actually be able to see any difference, because in reality there isn’t one, other than perhaps a marginal resolution increase. But it is harder to shoot FF than s35. Comparable lenses are more expensive, lens choices more limited, focus is more challenging at longer focal lengths or large apertures. If you get carried away with too large an aperture you get miniaturisation and cardboarding effects if you are not careful (these can occur with s35 too).
Can The Audience Tell – Does The Audience Care?
Cinema audiences have not been complaining that the DoF isn’t shallow enough, or that the resolution isn’t high enough (Arri’s success has proved that resolution is a minor image quality factor). But they are noticing focus issues, especially in 4K theaters.
 So while FF and the other larger format are here to stay. Full Frame is not the be-all and end-all. Many, many people believe that FF has some kind of magic that makes the images different to smaller formats because they “read it on the internet so it must be true”.  I think sometimes some things read on the internet create a placebo effect where when you read it enough times you will actually become convinced that the images are different, even when in fact they are not. Once they realise that actually it isn’t different, I’m quite sure many will return to s35 because that does seem to be the sweet spot where DoF and focus is manageable and IQ is plenty good enough. Only time will tell, but history suggest s35 isn’t going anywhere any time soon.

Today’s modern cameras give us the choice to shoot either FF or s35. Either can result in an identical image, it’s only a matter of aperture and focal length. So pick the one that you feel most comfortable with for you production. FF is nice, but it isn’t magic.

Really it’s all about the lens.

The really important thing is your lens choice. I believe that what most people put down as “the full frame effect” is nothing to do with the sensor size but the qualities of the lenses they are using. Full frame stills cameras have been around for a long time and as a result there is a huge range of very high quality glass to choose from (as well as cheaper budget lenses). In the photography world APS-C which is similar to super 35mm movie film has always been considered a lower cost or budget option and many of the lenses designed for APS-C have been built down to a price rather than up in quality. This makes a difference to the way the images may look. So often Full Frame lenses may offer better quality or a more pleasing look, just because the glass is better.

I recently shot a project using Sony’s Venice camera over 2 different shoots. For the shoot we used Full Frame and the Sigma Cine Primes. The images we got looked amazing. But then the second shoot where we needed at times to use higher frame rates we shot using super 35 with a mix of the Fujinon MK zooms and Sony G-Master lenses. Again the images looked amazing and the client and the end audience really can’t tell the footage from the first shoot with the footage from the second shoot.

Downsampling from 6K.

One very real benefit shooting 6K full frame does bring, with both the FX9 and Sony Venice (or any other 6K FF camera) is that when you shoot at 6K and downsample to 4K you will have a higher resolution image with better colour and in most cases lower noise than if you started at 4K. This is because the bayer sensors that all the current large sensor camera use don’t resolve 4K when shooting at 4K. To get 4K you need to start with 6K.

Hot Pixels and White Dots From My New Camcorder (FX9 and many others).

So you have just taken delivery of a brand new PXW-FX9. Turned it on and plugged it in to a 4K TV or monitor – and shock horror there are little bright dots in the image – hot pixels.

First of all, don’t be alarmed, this is not unusual, in fact I’d actually be surprised if there weren’t any, especially if the camera has travelled in any airfreight.

Video sensors have millions of pixels and they are prone to disturbance from cosmic rays. It’s not unusual for some to become out of spec. So all modern cameras incorporate various methods of recalibrating or re-mapping those pesky problem pixels. On the Sony professional cameras this is called APR. Owners of the Sony F5, F55, Venice and FX9 will see a “Perform APR” message every couple of weeks as this is a function that needs to be performed regularly to ensure you don’t get any problems.

You should always run the APR function after flying with the camera, especially on routes over the poles as cosmic rays are greater in these areas. Also if you intend to shoot at high gain levels it is worth performing an APR run before the shoot.

If your camera doesn’t have a dedicated APR function, typically found in the maintenance section of the the camera menu system, then often the black balance function will have a very similar effect. On some Sony cameras repeatedly performing a black balance will active the APR function.

If there are a lot of problem pixels then it can take several runs of the APR routine to sort them all out. But don’t worry, it is normal and it is expected. All cameras suffer from it. Even if you have 1000 dead pixels that’s still only a teeny tiny fraction of the 19 million pixels on the sensor.

APR just takes 30 seconds or so to complete. It’s also good practice to black balance at the beginning of each day to help minimise fixed pattern noise and set the cameras black level correctly. Just remember to ensure there is a cap on the lens or camera body to exclude all outside light when you do it!

SEE ALSO: http://www.xdcam-user.com/2011/02/are-cosmic-rays-damaging-my-camera-and-flash-memory/

connecting to The PXW-FX9 Using Content Browser Mobile For Monitoring and OtheR Functions.

One of the great features of the PXW-FX9 is the ability to connect a phone or tablet to the camera via WiFi so that you can view a near live feed from the camera (there’s about a 5 to 6 frame delay).

To do this you need to install the latest version of the free Sony Content Browser Mobile application on your phone. Then you would normally connect the phone to the cameras WiFi by placing the FX9 into Access Point Mode and use either NFC to establish the connection if your phone has it, or by manually connecting your phone’s WiFi to the camera.

However for many people this does not always provide a stable connection with frequent drop outs and disconnects. Fortunately there is a another way to connect the camera and phone and this seems much more stable.

First put the cameras WiFi into “Station Mode” instead of “Access Point” mode. Then setup your phone to act as a WiFi Hotspot. Now you can connect the camera to the phone by performing a network search on the camera. Once the camera finds the phones WiFi hotspot you connect the camera to the phone.

Once the connection from the camera to the phone has been established you should open Content Browser Mobile and it should find the FX9. If it doesn’t find it straight away swipe down with your finger to refresh the connection list. Then select the camera to connect to it.

Once connected this way you will have all the same options that you would have if connected the other way around (using Access Point mode). But the connection tends to be much, much more stable. In addition you can also now use the cameras ftp functions to upload files from the camera via your phones cellular data connection to remote servers.

If you want to create a bigger network then consider buying one of the many small battery powered WifI routers or a dedicated 4G MiFi hotspot and connect everything to that. Content Browser Mobile should be able to find any camera connected to the same network. Plus if you use a WiFi router you can connect several phones to the same camera.