Category Archives: Technology

The great S-Log2 or S-Log3 debate.

I’ve written about this many times before, but still it comes up again and again. Which is better? Which should I use? I hear all kinds of crazy comments and a lot of incorrect information, so first of all lets dispel a few myths:

S-Log2 captures more dynamic range than S-Log3, it goes to a higher level on the waveform.

S-Log2 and S-Log3 both currently record exactly the same dynamic range as this is limited by the sensors that Sony are using. The S-log3 curve could be used in a future camera to capture up to 16 stops, but that camera does not exist at the time of writing. As the S-Log3 curve is designed to go beyond 14 stops, stop No. 14 is recorded at a lower level to allow space for up to 2 more stops.  S-Log2 is a 14 stop maximum curve, so the peak level is much higher. In Sonys current camera range the limit is 14 stops whether it’s S-Log2 or S-Log3. The chart that Sony provide showing both S-Log2 and S-Log3 is a little confusing as it shows the entire gamma curve rather than what the camera can actually “see”. In their current implementations both curves stop at +6 stops over middle grey, both capture the same dynamic range, there is no difference.

S-Log2 is brighter than S-Log3 so it must be capturing highlights better.

No, not really, see above. Playback and on screen brightness comes from the levels chosen to record something at and is dependant on the shape and range of the gamma curve. But the actual captured range is dependant on what the sensor can cope with. As we are not changing the sensor, the captured dynamic range, brightness range and shadow range does not change between S-Log2 and S-log3, both of which take the entire sensor range (they just store that same range using slightly different levels). After applying a LUT or other conversion to your normal viewing gamma both S-Log2 and S-log3 will have the same brightness, same highlight and same shadow range.

S-Log3 has noisy shadows.

No, not really. Shadows appear noisy with S-Log3 as the shadow part of the curve is stored using higher code values compared to S-Log2. So when you view S-Log3 uncorrected the shadows are raised and stretched on your conventional monitor and this gives the impression of a noisy picture. In reality once you restore the levels to normal there is no additional noise. See this article for a full explanation.

S-log-levels The great S-Log2 or S-Log3 debate.
Chart showing S-Log2 and S-Log3 plotted against f-stops and code values. Note how little data there is for each of the darker stops, the best data is above middle grey. Note that current sensors only go to +6 stops over middle grey so S-Log2 and S-Log record to different peak levels.

S-Log3 is newer than S-Log2 so it must be better.

Newer, perhaps not. Better, no not really. S-Log3 is based on the industry standard Cineon log gamma curve. This curve was developed in the late 1980’s to allow the digitising of film using 10 bit data. So S-Log3 matches a curve designed to work with negative film and is capable of storing more than the 14 stops that the current cameras sensors can see. In effect it is an old log gamma curve. As it is a curve designed for more than 14 stops, when used in a 14 stop camera some of the available recording data is empty and wasted.

S-Log2 was specifically designed by Sony to work with an electronic sensor with 14 stops of dynamic range and is optimised to match the performance characteristics of video sensors. By using a 14 stop curve with a 14 stop camera almost every bit of available data is utilised, there is no wastage.

BUT THERE ARE SOME OTHER FACTORS WE NEED TO CONSIDER.

S-Log2 and S-Gamut:

As well as the gamma curve we also have different Gamuts or color ranges. S-Log2 was originally designed for the F65 camera. The F65 sensor can capture a huge color range beyond the range that most conventional video sensors can see. So as well as S-Log2 Sony introduced S-Gamut which was matched to the very wide color range of the F65 sensor. S-Log2 is designed to be used with S-Gamut. But many of the cameras we use, like the FS7, F5, FS5 cannot see this color range (Sony’s F55 can). In addition this very large color range can be a little tricky to deal with in post production. Add to this the fact that S-Log2 is quite different to the quite common Cineon gamma curve and as a result behaves differently in post. The end result was that there were a number of complaints and comments that Sony’s S-log2 material was difficult to grade.

S-Log3 and S-Gamut3.

Because some people were struggling a bit with S-Gamut and S-Log2 in post production (Resolve and many of the other tools we have today were not as well developed 4 years ago), Sony introduced S-Gamut3 and S-log3 as well as a further Gamut called S–Gamut3.cine. S-Log3 was based on Cineon as that’s what people were familiar with. Arri’s Log-C is also based on Cineon as are many other log curves. This makes it a more “familiar” grading experience for many colorists. In addition Sony created a modified version of the super large S-Gamut to make it easier to grade.  S-Gamut3 is just as big as S-Gamut but some tweaks inside make it easier to grade (fewer color shifts). At the same time Sony realised that most users were producing content for TV, the web or digital cinema that had little use for the huge color range of S-Gamut/S-Gamut3.  So S-Gamut3.cine was developed as a smaller, more manageable version of S-Gamut3 and it incorporated a few tweaks to the color science to provide colors closer to those used by other manufacturers. S-Gamut3.cine is also a better match for cameras with sensors that cannot see the full S-Gamut range (like the FS5, FS7, F5, A7).

The end result is that in general most people prefer or find it easier to grade S-Log3/S-Gamut3.cine material than S-Log2/S-Gamut. Plus you can often use LUT’s designed for Log-C or Cineon with S-log3 material (this isn’t optimum, but it can work).

Gamuts-1024x632 The great S-Log2 or S-Log3 debate.
SGamuts Compared.

Getting the data from camera to post.

In terms of getting the data from your cameras sensor in to post production S-Log2 is the better choice. It is optimised for the way an electronic sensor works. S-log3 is essentially a curve designed for negative film applications, not video and no matter how you look at it, these are electronic video cameras. However if you are recording 10 bit or greater you have a lot of data whichever curve you use, so in practice it will be rare to see any difference in the final result.

So use the curve you find easiest to work with. It is true that S-Log 3 allocates a little more data to the shadows and less to the highlights than S-Log2, but don’t confuse data and code values with more range. S-Log3 has a few extra code values in it’s darkest stops, S-log2 has a few extra in the bright stops, but the dynamic range, highlight and shadow handling is governed by the sensor not the gamma curve. Overall S-Log3 has fewer code values than S-Log2, S-Log2  makes better use of the data available, but with 10 bit this really isn’t going to make a huge difference.

8 Bit Recording.

But if you are only recording with an 8 bit codec you are already at a disadvantage. When recording 8 bit you really need to maximise the way what little data you have is used. For that reason I will always recommend that S-Log2 is used when recording 8 bit on a camera like the FS5 in UHD or A7s or similar (FS5 is 10 bit in HD). By using S-Log2 you are using as many of the limited code values available as you can. This doesn’t mean you can’t use S-log3, it just wouldn’t be my choice.

The end result should be the same.

At the end of the day, if you were to use matching LUTs, S-log2 and S-log3 material should look more or less exactly the same after grading or application of the LUT, no matter what the scene you are shooting. If they do look significantly different then you are doing something wrong. So your choice of curve, other than for 8 bit recordings will most likely come down to ease of use rather than anything else.

If your camera doesn’t have LUT’s then S-Log2 can be easier to work with as it is more contrasty. This makes it a bit easier to focus and also makes it easier to gauge exposure. If your camera has LUT’s and you use them, then you may decide to use S-Log3 simply because you should find it a little easier to work with in post. Either way both curves capture the same range of picture information and both should give more or less the same end result.

There may be some very, very subtle differences due to the small differences in data distribution, but often these will be hard to really see in the final image.

Notes on Timecode and Timecode Sync for cinematographers.

This is part 1 of two articles. In this article I will look at what timecode is and some common causes of timecode drift problems. In part 2 I will look at the correct way to synchronise timecode across multiple devices.

This is a subject that keeps cropping up from time to time. A lot of us camera operators don’t always understand the intricacies of timecode. If you live in a PAL/50Hz area and shoot at 25fps all the time you will have few problems. But start shooting at 24fps, 23.98 fps or start trying to sync different cameras or audio recorders and it can all get very complicated and very confusing very quickly.

So I’ve written these notes to try to help you out.

WHAT IS TIMECODE?

The timecode we normally encounter in the film and video world is simply a way to give every frame that we record a unique ID number based on the total number of frames recorded or the time of day.  It is a counter that counts whole frames. It can only count whole frames, it cannot count fractions of frames, as a result the highest accuracy is 1 frame. The timecode is normally displayed as Hour:Minute:Second:Frame in the following format

HH:MM:SS:FF

RECORD RUN AND FREE RUN

The two most common types of timecode used are “Record Run” and “Free Run”. Record run, as the name suggests only runs or counts up when the camera is recording. It is a cumulative frame count, which counts the total number of frames recorded. So if the first clip you record starts with the time code clock at 00:00:00:00 and runs for 10 seconds and 5 frames then the TC at the end of the clip will be 00:00:10:05. The first frame of the next clip you record will continue the count so will be 00:00:10:06 and so on. When you are not recording the timecode stops counting and does not increase.

With “Free Run” the timecode clock in the camera is always counting according to the frame rate the camera is set to. It is common to set the free run clock so that it matches the time of the day. Once you set the time in the timecode clock and enable “Free Run” the clock will start counting up whether you are recording or not.

HERE COMES A REALLY IMPORTANT BIT!

In “Free Run” once you have set the timecode clock it will always count the number of frames recorded and in some cases this will actually cause the clock to drift away from the actual time of day.

SOME OF THE PROBLEMS.

An old problem is that in the USA and other NTSC areas the frame rate is a really odd frame rate, it’s 29.97fps (this came about to prevent problems with the color signal when color TV was introduced). Timecode can only count actual whole frames, so there is no way to account for the missing 0.03 frames in every second. As a result timecode running at 29.97fps runs slightly slower than a real time clock.

If the frame rate was actually 30fps in 1 hour there would be 108,000 frames. But at 29.97fps after one real time hour you will have only recorded  107,892 frames, the frame counter TC, won’t reach one hour for another 3.6 seconds.

DROP FRAME TIMECODE.

To eliminate this 3.6 seconds per hour (relative to real time) timecode discrepancy in footage filmed at 29.97fps a special type of time code was developed called “Drop Frame Timecode“. Drop Frame Timecode (DF) works by: every minute, except each tenth minute, two timecode numbers are dropped from the timecode count. So there are some missing numbers in the timecode count but after exactly 1 real time hour the time code value will increment by 1 hour. No frames themselves are dropped, only numbers in the frame count.

WHEN TO USE DROP FRAME (DF) OR NON DROP FRAME (NDF).

Drop Frame Timecode is only ever used for material shot at  29.97fps, which includes 59.94i. (We will often incorrectly refer to this as 60i or 30fps – virtually all 30fps video these days is actually 29.97fps). If you are using “Rec Run” timecode you will almost never need to use Drop Frame as generally you will not by syncing with anything else.

If you are using 29.97fps  “Free Run” you should use Drop Frame (DF) when you want your timecode to stay in sync with a real time clock. An example would be shooting a long event or over several days where you want the timecode clock to match the time on your watch or the watch of an assistant that might be logging what you are shooting.

If you use 29.97fps Non Drop Frame  (NDF) your cameras timecode will drift relative to the actual time of day by a minute and a half each day. If you are timecode syncing multiple cameras or devices it is vital that they are all using the same type of timecode, mixing DF and NDF will cause all kinds of problems.

It’s worth noting that many lower cost portable audio recorders that record a “timecode” don’t actually record true timecode. Instead they record a timestamp based on a real time clock. So if you record on the portable recorder for lets say 2 hours and then try to sync the 1 hour point (01:00:00:00 Clock Time) with a camera recording 29.97fps NDF timecode using the 1 hour timecode number (01:00:00:00 NDF Timecode) they will be out of sync by 3.6 seconds. So this would be a situation where it would be preferable to use DF timecode in the camera as the cameras timecode will match the real time clock of the external recorder.

WHAT ABOUT 23.98fps?

Now you are entering a whole world of timecode pain!!

23.98fps is a bit of a oddball standard that came about from fitting 24fps films into the NTSC 29.97fps frame rate. It doesn’t have anything to do with pull up, it’s just that as NTSC TV runs at 29.97fps rather than true 30fps movies are sped up by 0.1% to fit in 29.97fps.

Now 23.98fps exists as a standalone format. In theory there is still a requirement for Drop Frame timecode as you can’t have 0.02 frames in a timecode frame count, each frame must have a whole number. Then after a given number of frames you go to the next second in the count. With 23.98fps we count 24 whole frames and the increment the timecode count by one second, so once again there is a discrepancy between real time and the timecode count of 3.6 seconds per hour. The time on a camera running at 23.98fps will run fast compared to a real time clock.  Unlike 29.97fps there is no Drop Frame (DF) standard for 23.98, it’s always treated as a 24fps count (TC counts 24 frames, then adds 1 to the second count), this is because there  is no nice way to adjust the count and make it fit real time as there is with 29.97fps. No matter how you do the math or how many frames you drop there would always be a fraction of a frame left over.

So 23.98fps does not have a DF mode. This means that after 1 hour of real time the timecode count on a camera shooting at 23.98 fps will be 00:01:03:14. If you set the camera to “Free Run” the timecode will inevitably drift relative to real time, again over the course of a day the camera will be fast by almost one and a half minutes compared to a real time clock or any other device using either drop frame timecode, 24fps or 25fps.

So, as I said earlier 23.98fps timecode can be painful to deal with.

24fps timecode does not have this problem as there are exactly 24 frames in every second, so a video camera shooting at 24fps should not see any significant timecode drift or loss of timecode sync compared to a real time clock.

It’s worth considering here the problem of shooting sync sound (where sound is recorded externally on a remote sound recorder). If your sound recorder does not have 23.98fps timecode the timecode  will drift relative to a camera shooting at 23.98fps. If your sound recorder only has a real time timecode clock you might need to consider shooting at 24fps instead of 23.98fps to help keep the audio and picture time codes in sync. Many older audio recorders designed for use alongside film cameras can only do 24fps timecode.

In part 2 I will look at the correct way to synchronise timecode across multiple devices.

CLICK HERE FOR PART 2

 

Latest Apple Pro Video Formats Update Adds MXF Playback.

If you are running the latest Mac Sierra OS the recent Pro Video Formats update, version 2.0.5 adds the ability to play back MXF OP1a files in Quick Time Player without the need to transcode.

mxf-playback-e1479727374478 Latest Apple Pro Video Formats Update Adds MXF Playback.
Direct preview of an XAVC MXF file in the finder of OS Sierra.

You can also preview MXF files in the finder window directly! This is a big deal and very welcome, finally you don’t need special software to play back files wrapped in one of the most commonly used professional media wrappers. Of course you must have the codec installed on your computer, it won’t play a file you don’t have the codec for, but XAVC, ProRes and many other pro codecs are include in the update.

At the moment I am able to play back most MXF files including most XAVC and ProRes MXF’s. However some of my XAVC MXF’s are showing up as audio only files. I can still play back these files with 3rd party software, there is no change there. But for some reason I can’t play back every XAVC MXF file directly in Quicktime Player, so play as audio only. I’m not sure why some files are fine and others are not, but this is certainly a step in the right direction. Why it’s taken so long to make this possible I don’t really know, although I suspect it is now possible due to changes in the core Quicktime components of OS Sierra.  You can apply this same Video Formats update to earlier OS’s but don’t gain the MXF playback.

Thanks to reader Mark for the heads-up!

What does Rec-2020 on the PXW-FS7 II really mean?

So, as you should have seen from my earlier post Sony has included Rec-2020 as a colorspace in custom mode on the new FS7 II. But what does this mean and how important is it? When would you use it and why?

Recommendation ITU BT.2020 is a set of standards created by the International Telecommunications Union for the latest and next generation of televisions. Within the standard there are many sub-standards that define things such as bit depth, frame size, frame rates, contrast, dynamic range and color.

Sony-Colorspaces-1024x815 What does Rec-2020 on the PXW-FS7 II really mean?
The colorspaces that Sony’s cameras can capture.

The Rec-2020 addition in the the FS7 II specifically refers to the color space that is recorded, determining the range of colors that can be recorded and the code values used to represent specific tones/hues.

First of all though it is important to remember that the FS7 II shares the same sensor as the original FS7, the FS5 and F5. Sony has always stated that this sensor is essentially a “709” sensor. The sensor in Sony’s PMW-F55 can capture a much greater color range (gamut) than the F5, FS5 and FS7, only the F55 can actually capture the full Rec-2020 color space, the FS7 II sensor cannot. It’s very difficult to measure the full color gamut of a sensor, but from the tests that I have done with the F5 and FS7 I estimate that this sensor can capture a color gamut close to that of the DCI-P3 standard, so larger than Rec-709 but not nearly as large as Rec-2020 (I’d love someone to provide the actual color gamut of this sensor).

So given that the FS7 II’s sensor can’t actually see colors all that far beyond Rec-709 what is the point of adding Rec-2020 recording gamut as the camera can’t actually fill the recording Gamut? Similarly the F5/FS5/FS7 cannot fill S-Gamut or S-Gamut3.

The answer is – To record the colors that are captured with the correct values. If you capture using Rec-709 and then play back the Rec-709 footage on a Rec-2020 monitor the colors will look wrong. The picture will be over saturated and the hues slightly off. In order for the picture to look right on a Rec-2020 monitor you need to record the colors at the right values. By adding Rec-2020 to the FS7 II Sony have given users the ability to shoot Rec-2020 and then play back that content on a Rec-2020 display and have it look right. You are not capturing anything extra (well, maybe a tiny bit extra), just capturing it at the right levels so it at least looks correct.

As well as color, Rec-2020 defines the transfer functions, or gamma curves to you and me, that should be used. The basic transfer function is the same as used for Rec-709, so you can use Rec-709 gamma with Rec-2020 color to get a valid Rec-2020 signal. For full compatibility this should be 3840×2160 progressive and 10bit (the Rec-2020 standard is a minimum of 10bit and as well as 3840×2160 also includes 7680×4320).

But, one of the hot topics right now in the high quality video world is the ability to display images with a much greater dynamic range than the basic Rec-709 or Rec-2020 standards allow. There is in fact a new standard called Rec-2100 specifically for HDR television. Rec-2100 uses the same colorspace as Rec-2020 but then pairs that bigger colorspace with either Hybrid Log Gamma or ST2084 gamma, also know as PQ (Perceptual Quantiser). As the FS7 II does not have PQ or HLG as gamma curves you cannot shoot material that is directly compatible with Rec-2100. But what you can do is shoot using S-Log2/S-Log3 with S-Gamut/S-Gamut3/SGamut3.cine which will give you the sensors full colorspace with the sensors full 14 stop dynamic range. Then in post production you can grade this to produce material that is compatible with the Rec-2100 standard or the Rec-2020 standard. But of course you can do this with an original FS7 (or F5) too.

So, when would you actually  use the FS7 II’s Rec-2020 colorspace rather than S-Log/S-Gamut?

First of all you don’t want to use it unless you are producing content to be shown on Rec-2020 displays. Recording using Rec-2020 color gamut and then showing the footage on a Rec-709 display will result in washed out colors that don’t look right.

You would probably only ever use it if you were going to output directly from the camera to a monitor that only supports Rec-2020 color or for a project that will be specifically shown on a standard dynamic range Rec-2020 display. So, IMHO this extra colorspace is of very limited benefit. For most productions regular Rec-709 or S-Log/S-Gamut will still be the way forward unless Sony add Hybrid Log Gamma or PQ gamma to the camera as well. Adding HLG or PQ however has problems of it’s own as the existing viewfinders can only show standard dynamic range images, so an external HDR capable monitor would be needed.

Rec-2020 recording gamut is a nice thing to have and for some users it may be important. But overall it’s not going to be a deal breaker if you only have a standard FS7 as the S-Log workflow will allow you to produce Rec-2020 compatible material.

 

 

Stella 1000 and Stella 2000 Camera Lights.

20161012_141332-1024x576 Stella 1000 and Stella 2000 Camera Lights.
The diminutive but incredibly bright Stella 1000 from Light & Motion.

I have been loaned a set of 4 Stella lights to test. I have the Stella 1000, 2000, 5000 Pro and 7000 Pro to play with and test. I’m going to take a quick look at the 1000/2000 now and will write up the 5000/7000 in a later article. These lamps are made by Californian company Light & Motion (www.lightandmotion.com) and I have to admit that this is a new brand to me. The portable lighting market is full of many different lights from different manufacturers, so it’s a tough market to stand out in. However these lights really do stand out from the crowd for many different reasons.

Build Quality: If you are going to stick a light on the top of a news camera it had better be tough. It’s going to get bumped, bashed, knocked and generally have a tough life. The Stella lamps are all beautifully made. The bodies are made from a very robust feeling plastic material while the lamp surround is made out of anodised aluminium that acts as a heatsink to keep the lamps cool. They have been built to withstand being dropped onto concrete from 1m multiple times without breaking and while I haven’t actually tested this, I do believe that they would survive this and the rigours of life on top of an ENG camera.

20161012_141426-1024x576 Stella 1000 and Stella 2000 Camera Lights.
The slightly larger Stella 2000 lamp.

Power: The lamps have built in high capacity batteries. You don’t need to buy batteries or run the lamps of the cameras batteries. The internal battery in the Stella 1000 will run it for an hour on full power and around 7 hours at low power. The brighter 2000 will give about 50 mins at full power and 6 hours on low power. If you want longer run times you can attach an adapter to run the lamp from an external power source. Re-charging is fast at a little under 2 hours from flat and you can pack these in the hold of an aircraft as the battery is installed internally and under the current restrictions for Li-Ion batts on aircraft.

Control: The lamps have a built in dimmer that allows you to select one of 6 different brightness levels. Being LED units there is no  color temperature change as you dim the lamps. The dimmer control can be locked in the off position to prevent accidental operation, plus the lamps have a thermal cutoff to prevent damage if left on by mistake when covered or perhaps packed in your luggage. There are 3 LED’s that indicate the batter state and dimming level.

20161012_141506-1024x576 Stella 1000 and Stella 2000 Camera Lights.
Dimming and power control of the Stella 2000 portable video light.

High Quality Light: Instead of the more common LED panel design with an array of a large number of small LED’s the Stella’s feature a single high power Chip 5000K LED.  This gives a beam angle of 120 degrees and the light is very uniform across this entire spread. The lamp heads are designed to take modifier lenses that can be used to reduce the beam spread to 50 degrees and 25 degrees if you need more of a spot light. I used the 25 degree fresnel adapter to turn the Stella 1000 to a mini spot light and it was very effective.

20161012_141432-1024x576 Stella 1000 and Stella 2000 Camera Lights.
The high intensity 90 CRI/90 TLCI chip LED of the Light & Motion Stella 2000

The quality of the light from these lamps is very good. The have a CRI of 90 as well as a TLCI of 90. They are also flicker free so suitable for shooting at high frame rate. In use I found the lamps gave great skin tone rendition and I didn’t see any of the green cast that is often common with lower quality LED lamps.

These are surprisingly bright lamps. The Stella 1000 is 1000 lumens and surprise, surprise, the Stella 2000 is 2000 lumens. That’s one heck of a lot of light from such a small and compact unit. Everyone that I have shown these lights to has been impressed by the intensity of the light output. The Stella 1000 is similar to a 75W tungsten lamp and the 2000 close to a 200W tungsten lamp. As the Stella’s are daylight balanced if you are using them as a fill light when shooting into the sun there is no need to gel them as you would with a tungsten light. Add to that the ability to use a clip on fresnel lens to narrow the beam angle and you are approaching the performance of 300W gelled tungsten fresnel fixture but with a compact battery operated lamp. I would consider the Stella 2000 as a replacement for an Arri 300 fresnel in many applications.

Waterproof! The Stella 1000 and 2000 are waterproof! Not just shower and splash proof, but completely waterproof. They can be operated underwater at depths of up to 100m with needing to buy any extra seals or fit any bungs or plugs. I know that when I shooting in adverse weather conditions this will be a big deal as normally the camera will have a nice fitted cover, but the top light is almost always left exposed to the elements. Now I don’t need to worry.

Light and Motion have a wide range of accessories for these lamps including all kinds of different mounts and handles.  As well as the usual barn doors there are some clever light modifiers including the clip on 25 degree fresnel lens, a clip on 50 degree lens, a clip on diffuser, gel holder and glo bulb.

So far I have been really impressed by what these small lamps can do.  They may not have variable color temperature, but the consistency and quality of the light they produce is amazing. The companies tag line is “Beyond Bright” and I’m inclined to agree.

I’ve also been loaned the Stella 5000 Pro and 7000 Pro to test. I’ll be writing about these beauties in the coming weeks!

Webinar Recordings.

In case you missed the webinars I presented yesterday here are recordings of the 2 afternoon sessions. The first one on HDR, what is it and what does it mean for you. The second is a question and answers session on Sony’s large sensor cameras, from the FS5 to the F55. There were quite a few a6300 and A7s questions thrown in there too!

Hopefully I will be able to find a sponsor that will be able to make these a regular event.

 

How much technology does a modern cinematographer need to know?

This post might be a little controversial, I am often told “you don’t need to know the technical stuff to be a cinematographer” or “I don’t need to know about log and gamma, I just want to shoot”.

I would argue that unless you are working closely with a good DIT a modern DP/Cinematographer really does need to understand many of the technical aspects of the equipment being used, in particular the settings that alter the way the camera captures the images. Not just things like “set it to gamma x for bright scenes” but why you would want to do that.

Now I’m not saying that you have to be a full blown electronics engineer, but if you really want to capture the best possible images it really is very important that you truly understand what the camera is doing. It’s also a huge help to understand how your footage will behave in post production. Any craftsman should understand the correct way to use his tools and not only know how to use them but how they work.

Part of the understanding of how your chosen camera behaves comes from testing and experimentation. Shooting test clips across a range of exposures, trying different gamma or log curves and then taking the footage into post production and seeing how it behaves.

Film cinematographers will shoot tests with different film stocks before a large production under the kinds of lighting conditions that will be encountered during the film. Then the film would be processed in different ways to find the best match to the look the cinematographer is trying to achieve. Digital cinematographers should be doing the same and importantly understanding what the end results are telling them.

Most of the great painters didn’t just pick up a paint brush and slap paint on a canvas. Many artists from  Da Vinci to Turner studied chemistry so they could develop new paints and painting techniques. DaVinci was a pioneer of oil painting, Turner used to make his own paints from base pigments and chemicals and patented some of the unique colors he created.

This doesn’t take anything away from the traditional skills of lighting and composition etc, those are just as important as ever and always will be. But modern electronic cameras are sophisticated devices that need to be used correctly to get the best out of them.  I believe that you need to understand the way your camera responds to light. Understands it’s limitations, understand it’s strengths and learn how to use those strengths and avoid the weaknesses.

And that’s a really important consideration. Today the majority of the cameras on the market are capable of making great images…… Provided you know how to get the best from them. One may be stronger in low light, one may be better in bright light. It may be that one camera will suit one job or one scene better than another. You need to learn about these differences and understanding the underlying technologies will help you figure out which cameras may be candidates for your next project.

It’s not just the camera tech that’s important to understand but also how to manage the footage all the way from the camera to delivery. While you don’t need to be an expert colorist, it certainly helps if you know the process, just as film cameramen know about color timing and film processing. A trend that is growing in the US is high end cinematographers that also grade.

This has come about because in the days of film the cinematographer could determine the look of the finished production through a combination of lighting, the choice of film stock and how it was to be processed. Today a cinematographer may have much less control  over the final image as it passes through the post production and grading process. Often the final look is determined by the colorist as much as the cinematographer. By also becoming colorists and staying with their material all the way through post production, cinematographers can retain control of the final look of the production.

As HDR (High Dynamic Range) delivery becomes more important along with the need to deliver SDR content at the same time, a good understanding of the differences between and limitations of both systems will be needed as you may need to alter the way you expose to suit one or the other.

So, there is lots that you need to know about the technology used in todays world of digital cinematography. Where there is a big enough budget DIT’s (Digital Imaging Technicians) can help cinematographers with guidance on camera setups, gamma, color science, LUT’s and workflows. But at the low budget end of the market, as a cinematographer you need at the very least a firm grasp of how a modern camera works, how to correctly mange the dat it produces (you would be amazed how many people get this wrong). Finally how the material handles in post production, if you really want to get the best from it.

It isn’t simple, it isn’t always easy, it takes time and effort. But it’s incredibly rewarding when it all comes together and results in beautiful images.

If you disagree or have your own take on this please post a comment. I’d love to hear other views.

Revealing Signal to Noise and Exposure experiment for PMW-F5, F55 and FS7.

Here’s a little experiment for you to try if you have a PMW-F5, PMW-F55 or PMW-FS7. It should help you understand a few key things about the way these cameras behave, notably:

1: Why ISO does not actually reflect the sensitivity of the camera.

2: Why it is beneficial to expose S-Log2 or S-Log3 brighter than the Sony recommended levels.

3: How to get the best possible S-Log footage.

4: Why S-log may be a poor choice for low light.

Ideally you will want to use an external waveform monitor connected to the cameras SDI output, but it is possible to use the built in waveform display.

Start with the camera in Custom mode. Choose “STD” gamma and Rec-709. Set the gain/ISO settings so that the camera is showing ISO.

Set the ISO to the base ISO (800 ISO on F5/FS7, 500 ISO on F55).

Expose a 90% white card so that white is 90% on the waveform display. This doesn’t need to be 100% accurate, you can use a piece of paper if you don’t have a proper white card. Don’t change the ISO/Gain, light the white card if you need to. Make a note of the aperture.

Now change the gamma selection to S-Log2, do not change the exposure.

Note how white now drops down to about 70% and also note that the ISO becomes 2000 ISO on an F5 or FS7 and 1250 ISO on an F55.

Think about this for a moment: If the ISO has gone up, how can white and the bulk of my image become darker?

Now switch the camera to show dB gain instead of ISO, the gain should be showing 0dB. Repeat the above switching from Standard 709 gamma to S-Log2 and note that the gain remains at 0dB for both rec-709 and S-Log2.

Think about this: The gain is the same for both 709 and S-log2 but the S-Log2 image is darker. As the gain is NOT changing then the sensitivity is not actually changing, so why does the ISO change?

If you were to use a light meter and start off with the light meter set to 800 (500) ISO the light meter would tell you to set the aperture to whatever it is you currently have to give the correct exposure in rec-709 with white at 90%.  If you had a light meter and you change the ISO setting on the light meter from 800(500)ISO to 2000(1250) ISO the light meter will tell you to close the aperture by 1.3 stops.

So, on your camera, while it is set to S-Log2 close the aperture from it’s original setting by 1.3 stops. Now you will find that white will be at the recording levels given by Sony for S-Log2 which is 59% for white and 32% for middle grey.

So what have we learnt from this? The gain is the same for both standard gamma and S-Log2, even though the ISO changes from 800(500) to 2000(1250) ISO. So the sensitivity and amount of noise coming from the sensor is the same in both cases. But the indicated ISO changes so that if you are using an external light meter, when you switch to S-Log the higher indicated ISO  will make the light meter tell you to close the aperture. This means there is less light falling on the sensor. This means that the recorded image will have a worse signal to noise ratio (noise remains the same, but signal is smaller).

To solution of course to this poorer signal to noise ratio is simply to open the aperture back up again by 1.3 stops. When shooting S-Log2 or S-Log3 using the CineEI mode I always recommend using 800EI on an F5 or FS7 or 640EI on an F55. This means your aperture becomes the same as it would be when shooting in vanilla Rec-709, the end result is the same, improved, signal to noise ratio. If you are not using CineEI or LUT’s, then expose white at 70%.

Understanding the all important “Signal to Noise Ratio”.

The Signal to Noise ratio is one of the key factors in determining the quality of a video or stills image. A noisy, grainy picture rarely looks as good as a low noise “clean” image. In addition it’s noise in your images will limit how far you can grade them before the picture quality becomes unacceptably poor.

Almost always what you want is the biggest possible signal with the least possible noise. In a video or film camera the signal is the desired image information or in simple terms the picture. While the noise is…. well….. the noise.

Once upon a time, when film cameras were normal for both still photography and film the noise in the pictures came primarily from the grain structure of the film stock. One of the great features of film cameras is that you can actually change that film stock to suit the type of scene that you are shooting. For low light you could use a more sensitive film stock that was actually truly more sensitive to light. However, often a very sensitive film stock will show more noise as the grain of more sensitive film is normally larger.

With video and digital stills cameras however things are quite different. You can’t normally change the sensor in a video camera and it’s the sensor that determines the sensitivity of the camera and it is the sensor that is the source of the majority of the noise.

Modern CMOS video sensors consist of two parts. The light gathering part and the readout part. The size of the pixels on a sensor is one of the key factors in determining the sensitivity and dynamic range. Small pixels are not good at capturing, converting and storing large numbers of photons of light or electrons of electricity.  Bigger pixels are much better at this, so big pixels typically mean better sensitivity and a better dynamic range. Each pixel is unique and as a result every pixel on the sensor will perform slightly differently. The signal stored in the pixels is a tiny analog signal that is easily disturbed by stray electric currents and variations in temperature. As a result of the small variations from pixel to pixel, the stray signals and heat, there is a small variation from moment to moment in the signal that comes off the pixel when it is read out and these variations are what we see as noise.

The analog signal from the pixels is passed to a circuit that converts it to a digital signal. The analog to digital conversion process normally includes some form of noise reduction circuitry to help minimise the noise. By carefully mapping the A to D circuity to the signal range the pixels provide, a sensor manufacturer can find the best combination of noise, dynamic and sensitivity. Once the signal has been converted to a digital one, the noise level, sensitivity and dynamic range is more or less locked in and can’t be changed (Some cameras have the ability to use slightly different A to D conversion ranges to help give improved noise levels at different brightness/dynamic ranges).

The bottom line of all this is that with the vast majority of video cameras the noise level is more or less fixed,  as is the sensitivity as we can’t actually swap out the sensor.

But wait! I hear you say…. My camera allows me to change the ISO or gain. Well yes it probably does and in both cases, ISO or gain, with a digital video or stills camera what you are changing is the cameras internal signal amplification. You are NOT making the camera more sensitive, you are simply turning up the volume. As anyone with any type of sound system will know, when you turn up the gain you get more hiss. This is because gain makes not only the desired signal bigger but also the noise. As a result adding gain or increasing the ISO is rarely a great thing to do.

So normally we want to use a digital camera at it’s native sensitivity wherever possible. The native sensitivity is where no gain is being added by the camera or 0dB. In ISO, well you need to find out what the native ISO is and be aware that different gamma curves will have different base ISO’s (which is why I prefer to use dB gain as 0dB = native sensitivity, least noise, best dynamic range, no matter what gamma curve).

To get the best possible image we then want to make our signal (picture information) as big as possible. As we can’t swap out the sensor, the only way to do that is to put as much light as possible onto the sensor. Obviously we don’t want to overload the sensor or exceed the limitations of the recording system, but generally the more light you get on the sensor, the better your pictures will be.

As the sensors noise output remains more or less constant, the best signal to noise ratio will be gained when you put a lot of light on the sensor. This generates a very large signal, so the signal becomes big compared to the noise and the noise becomes only a small percentage of the overall image.

If we are unable to get enough light onto the sensor to expose it fully then it is often tempting to add some gain to make the picture brighter. 6dB of gain is the equivalent to 1 stop of exposure. Just like f-stops, each time we go up a stop we are doubling. So adding 6db of gain doubles everything. It makes the picture the equivalent of one stop brighter, but it also doubles the noise. Adding 12dB gain multiplies the noise 4 times, adding 18dB multiplies the noise 8 times.

What if instead of adding gain to make the picture brighter we let 4x more light fall on the sensor (2 stops)? Well the image gets brighter by the equivalent of 2 stops but as we are not adding gain this means the desirable signal, the picture is now going to be the equivalent of 12dB bigger than the noise than it was before we added the 2 stops of light. That’s going to give you a much cleaner looking image.

How do you get more light onto the sensor? There are many ways such as using a faster lens with a larger aperture that will let more light through. Or you could try using a slower shutter speed (I often find it beneficial in low light to use a 1/24th or 1/25th shutter if there is not too much motion to cause the image to become excessively blurred). Then of course you can also add light to your scene by lighting it. It’s very rare to find noisy and grainy night scenes in feature films and that’s because the night scenes normally have well lit foregrounds but keep dark backgrounds to maintain the sensation of night time or darkness. High contrast is the key to good looking night scenes, well lit foregrounds or actors with deep, dark shadows and backgrounds.

The desire to have a good signal to noise ratio is one of the reasons why when shooting in log or raw you want to expose as brightly as you can (while still maintaining consistent exposure from shot to shot, scene to scene). It’s a little bit harder with standard gammas as we have things like the knee or highlight roll off to deal with. Plus the need to have a shot that looks correct straight out of the camera. But at the end of the day the best results are almost always gained when the gain is kept to a minimum (but don’t use negative gain as this can effect the dynamic range) and the amount of light falling on the sensor as high as possible.

In the next article I’ll give you an interesting experiment to try on a PMW-F5, F55 or PMW-FS7 that is very revealing  about the way ISO, gain, exposure and noise behaves that will show why exposing log or raw at +1 to +2 stops is so important.