Category Archives: Technology

Do I need to worry about 8K?

This is a question that gets asked a lot. And if you are thinking about buying a new camera it has to be one the you need to think about. But in reality I don’t think 8K is a concern for most of us.

I recently had a conversation with a representative of a well known TV manufacturer. We discussed 8K and 8K TV’s. An interesting conclusion to the conversation was that this particular TV manufacturer wasn’t really expecting their to be a lot of 8K content anytime soon. The reason for selling 8K TV’s is the obvious one – In the consumers eyes. 8K is a bigger number than 4K, so it must mean that it is better. It’s any easy sell for the TV manufacturers, even though it’s arguable that most viewers will never be able to tell the difference between an 8K TV and a 4K one (lets face it most struggle to tell the difference between 4K and HD).

Instead of expecting 8K content this particular TV manufacturer will be focussing on high quality internal upscaling of 4K content to deliver an enhanced viewing experience.

It’s also been shown time and time again that contrast and Dynamic Range trump resolution for most viewers. This was one of the key reasons why it took a very long time for electronic film production to really get to the point where it could match film. A big part of the increase in DR for video cameras came from the move from the traditional 2/3″ video sensor to much bigger super 35mm sensors with bigger pixels. Big pixels are one of the keys to good dynamic range and the laws of physics that govern this are not likely to change any time soon.

This is part of the reason why Arri have stuck with the same sensor for so long. They know that reducing the pixel size to fit more into the same space will make it hard to maintain the excellent DR their cameras are known for. This is in part why Arri have chosen to increase the sensor size by combining sensors. It’s at least in part why Red and Sony have chosen to increase the size of their sensors beyond super 35mm as they increase resolution. The pixels on the Venice sensor are around the same size as most 4K s35 cameras. 6K was chosen as the maximum resolution because that allows this same pixel size to be used, no DR compromise, but it necessitates a full frame sensor and the use of high quality full frame lenses.

So, if we want 8K with great DR it forces us to use ever bigger sensors. Yes, you will get a super shallow DoF and this may be seen as an advantage for some productions. But what’s the point of a move to higher and higher resolutions if more and more of the image is out of focus due to a very shallow DoF? Getting good, pin sharp focus with ever bigger sensors is going to be a challenge unless we also dramatically increase light levels. This goes against the modern trend for lower illumination levels. Only last week I was shooting a short film with a Venice and it was a struggle to balance the amount of the subject that was in focus with light levels, especially at longer focal lengths. I don’t like shots of people where one eye is in focus but the other clearly not, it looks odd, which eye should you choose as the in-focus eye?

And what about real world textures? How many of the things that we shoot really contain details and textures beyond 4K? And do we really want to see every pore, wrinkle and blemish on our actors faces or sets? too much resolution on a big screen creates a form of hyper reality. We start to see things we would never ever normally see as the image and the textures become magnified and expanded. this might be great for a science documentary but is distracting for a romantic drama.

If resolution really, really was king then every town would have an IMAX theater and we would all be shooting IMAX. 

Before 8K becomes normal and mainstream I believe HDR will be the next step. Consumers can see the benefits of HDR much more readily than 8K. Right now 4K is not really the norm, HD is. There is a large amount of 4K acquisition, but it’s not mainstream. The amount of HDR content being produced is still small. So first we need to see 4K become normal. When we get to the point that whenever a client rings the automatic assumption is that it’s a 4K shoot, so we won’t even bother to ask, that’s when we can consider 4K to be normal, but that’s not the case for most of us just yet. Following on from that the next step (IMHO) will be where for every project the final output will be 4K HDR. I see that as being at least a couple of years away yet.

After all that, then we might see a push for more 8K. At some point in the not too distant future 8K TV’s will be no more expensive than 4K ones. But I also believe that in-TV upscaling will be normal and possibly the preferred mode due to bandwidth restrictions. less compressed 4K upscaled to 8K may well look just as good if not better than an 8K signal that needs more compression.

8K may not become “normal” for a very long time. We have been able to easily shoot 4K for 6 years or more, but it’s only just becoming normal and Arri still have a tremendous following that choose to shoot at less than 4K for artistic reasons. The majority of Cinemas with their big screens are still only 2K, but audiences rarely complain of a lack of resolution. More and more content is being viewed on small phone or tablet screens where 4K is often wasted. It’s a story of diminishing returns, HD to 4K is a much bigger visual step than 4K to 8K and we still have to factor in how we maintain great DR.

So for the next few years at least, for the majority of us, I don’t believe 8K is actually desirable. many struggle with 4K workflows and the extra data and processing power needed compared to HD. An 8K frame is 4 times the size of a 4K frame. Some will argue that shooting in 8K has many benefits. This can be true if you main goal is resolution but in reality it’s only really very post production intensive projects where extensive re-framing, re-touching etc is needed that will benefit from shooting in 8K right now. It’s hard to get accurate numbers, but the majority of Hollywood movies still use a 2K digital intermediate and only around 20% of cinemas can actually project at more than 2K.

So in conclusion, in my humble opinion at least. 8K is more about the sales pitch than actual practical use and application. So people will use it – just because they can and it sounds impressive. But for most of us right now it simply isn’t necessary and it may well be a step too far.


ProRes Raw Over Exposure Magic Tricks – It’s all smoke and mirrors!

There are a lot of videos circulating on the web right now showing what appears to be some kind of magic trick where someone has shot over exposed, recorded the over exposed images using ProRes Raw and then as if by magic made some adjustments to the footage and it goes from being almost nothing but a white out of over exposure to a perfectly exposed image.

This isn’t magic, this isn’t raw suddenly giving you more over exposure range than you have with log, this is nothing more than a quirk of the way FCP-X handles ProRes Raw material.

Before going any further – this isn’t a put-down of raw or ProRes raw. It’s really great to be able to take raw sensor data and record that with only minimal processing. There are a lot of benefits to shooting with raw (see my earlier post showing all the extra data that 12 bit raw can give). But a magic ability to let you over expose by seemingly crazy amounts isn’t something raw does any better than log.

Currently to work with ProRes Raw you have to go through FCP-X. FCP-X applies a default sequence of transforms to the Raw footage to get it from raw data to a viewable image. These all expect the footage to be exposed exactly as per the camera manufacturers recommendations, with no leeway. Inside FCP-X it’s either exposed exactly right, or it isn’t.

The default decode settings include a heavy highlight roll-off. Apple call it “Tone Mapping”. Fancy words used to make it sound special but it’s really no different to a LUT or the transforms and processes that take place in other raw decoders. Like a LUT it maps very specific values in the raw data  to very specific output brightness values. So if you shoot just a bit bright – as you would often do with log to improve the signal to noise ratio – The ProRes raw appears to be heavily over exposed. This is because anything bright ends up crushed into nothing but flat white by the default highlight roll off that is applied by default.

In reality the material is probably only marginally over exposed, maybe just one to 2 stops which is something we have become used to doing with log. When you view brightly exposed log, the log itself doesn’t look over exposed, but if you apply a narrow high contrast 709 LUT to it, it then the footage looks over exposed until you grade it or add an exposure compensated LUT.  This is what is happening by default inside FCP-X, a transform is being applied that makes brightly exposed footage look very bright and possibly over exposed – because thats the way it was shot!

This is why in FCP-X  it is typical to change the color library to WCG (Wide Color Gamut) as this changes the way FCP-X processes the raw, changing the Tone Mapping and most importantly getting rid of the highlight roll off. With no roll-off, highlights and any even slight over exposure will still blow out as you can’t show 14 stops on a conventional 6 stop TV or monitor. Anything beyond the first 6 stops will be lost, the image will look over exposed until you grade or adjust the material to control the brighter parts of the image and bring them back into a viewable range. When you are in WCG mode in FCP-X the there is no longer a highlight roll off crushing the highlights and now because they are not crushed they can be recovered, but there isn’t any more highlight range than you would have if you shot with log on the same camera!

None of this is some kind of Raw over exposure magic trick as is often portrayed. It’s simply not really understanding how the workflow works and appreciating that if you shoot bright – well it’s going to look bright – until you normalise it in post. We do this all the time with log via LUT’s and grading too! It can be a little more straight forward to recover highlights from Linear Raw footage as comes form an FS5 or FS7 compared to log. That’s because of the way log maintains a constant data level in each highlight stop and often normal grading and colour correction tools don’t deal with this correctly. The highlight range is there, but it can be tricky to normalise the log without log grading tools such as the log controls in DaVinci Resolve.

Another problem is the common use of LUT’s on log footage. The vast majority of LUT’s add a highlight roll off, if you try to grade the highlights after adding a LUT with a highlight roll off it’s going to be next to impossible to recover the highlights. You must do the highlight recovery before the LUT is added or use a LUT that has compensation for any over exposure. All of these things can give the impression that log has less highlight range than the raw from the same camera. This is not normally the case, both will be the same as it’s the sensor that limits the range.

The difference in the highlight behaviour is in the workflows and very often both log and raw workflows are miss-understood. This can lead to owners and users of these cameras thinking that one process has more than the other, when in reality there is no difference, it’s appears to be different because the workflow works in a different way.

What are the benefits of ProRes Raw with the PXW-FS5?

There has been a lot of discussion recently and few videos posted that perhaps give the impression that if you shoot with S-Log2 on an FS5 and compare it to raw shot on the FS5 there is very little difference.

Many of the points raised in the videos are correct. ProRes raw won’t give you any more dynamic range. It won’t improve the cameras low light performance. There are features such as automatic lens aberration correction applied when shooting internally which isn’t applied when shooting raw.  Plus it’s true that shooting ProRes raw requires an external recorder that makes the diminutive little FS5 much more bulky.

So why in that case shoot ProRes Raw?

Frankly, if all you are doing is producing videos that will be compressed to within an inch of their life for YouTube, S-Log2 can do an excellent job when exposed well, it can be graded and can produce a nice image.

But if you are trying to produce the highest quality images possible then well shot ProRes raw will give you more data to work with in post production with fewer compression artefacts than the internal 8 bit UHD XAVC.

I was looking at some shots that I did in preparation for my recent webinar on ProRes raw earlier today and at first glance there isn’t perhaps much difference between the UHD 8 bit XAVC S-Log2 files and the ProRes raw files that were shot within seconds of each other. But look more closely and there are some important differences, especially if skin tones are important too you.

Skin tones sit half way between middle grey and white and typically span around 2 to 3 stops. So with S-Log 2 and an 8 bit recording a face would span around 24 to 34 IRE and have a somewhere between 24 and 35 code values – Yes, that’s right, maybe as few as 24 shades in each of the R, G and B channels. If you apply a basic LUT to this and then view it on a typical 8 bit monitor it will probably look OK.

But compare that to 12 bit linear raw recording and the same face with 2 to 3 stops across it will have anywhere up to 10 to 20 times as many code values ( somewhere around 250 – 500 code values depending on exactly how it’s exposed) . Apply the same LUT as for the S-Log2 and on the surface it looks pretty much the same – or does it?

Look closely and you will see more texture in the 12 bit raw. If you are lucky enough to have a 10 bit monitor the differences are even more apparent. Sure, it isn’t an in-your-face night and day difference but the 12 bit skin tones look less like plastic and much more real, they just look nicer, especially if it’s someone with a good complexion.

In addition looking at my test material I am also seeing some mpeg compression artefacts on the skin tones in the 8 bit XAVC that has a smoothing effect on the skin tones, reducing some of the subtle textures and adding to the slightly un-real, video look.

The other deal with a lack of code values and H624 compression  is banding. Take 8 bit S-Log2 and start boosting the contrast in a sky scene, perhaps to bring out some cloud details and you will start to see banding and stair stepping if you are not very careful. You will also see it across wall and other textureless surfaces. You can even see this on your grading suite waveform scopes in many cases. You won’t get this with well exposed 12 bit linear raw (for any normal grading at least).

None of these are huge deals perhaps. But what is it that makes a great picture? Take Sony’s Venice or the Arri Alexa as examples. We know these to be great cameras that produce excellent images. But what is it that makes the images so good? The short answer is that it is a combination of a wide range of factors, each done as well as is possible. Good DR, good colour, good skin tones etc. So what you want to record is whatever the sensor in your camera can deliver as well as you can. 8 bit UHD compressed to only 100Mb/s is not really that great. 12 bit raw will give you more textures in the mid range and highlights. It does have some limitations in the shadows, but that is easily overcome with a nice bright exposure and printing down in post.

And it’s not just about image quality.

Don’t forget that ProRes Raw makes shooting at 4K DCI possible. If you hope to ever release your work for cinema display, perhaps on the festival circuit, you are going to be much better off shooting in the cinema DCI 4K standard rather than the UHD TV standard. It also allows you to shoot 60fps in 4K (I’m in the middle of a very big 4K 60p project right now). Want to shoot even faster – well with ProRes Raw you can, you can shoot at up to 120fps in 4K. So there are many other benefits to the raw option on the FS5 and recording to ProRes raw on a Shogun Inferno.

There is also the acceptability of 8 bit UHD. No broadcaster that I know of will ever consider 8 bit UHD unless there is absolutely no other way to get the material. You are far more likely to be able to get them to accept 12 bit raw.

Future proofing is another consideration. I am sure that ProRes raw decoders will improve and support in other applications will eventually come. By going back to your raw sensor data with better software you may be able to gain better image quality from your footage in the future. With Log you are already somewhat limited as the bulk of the image processing has already been done and is baked into the footage.

It’s late on Friday afternoon here in the UK and I’ve promised to spend some time with the family this evening. So no videos today. But next week I’ll post some of the examples I’ve been looking at so that you can see where ProRes raw elevates the image quality possible from the FS5.

PXW-FS5 II Secret Sauce and Venice Colour Science.

At NAB 2018 a very hot topic is the launch of the FS5 II. The FS5 II is an update on the existing FS5 that includes the FS Raw output option and the HFR option as standard. So out of the box this means that this camera will be a great match to an Atomos Inferno to take advantage of the new Apple ProRes Raw codec.

Just like the FS5 the FS5 II can shoot using a range of different gamma curves including Rec-709, HLG, S-Log2  and S-Log3. So  for those more involved projects where image control is paramount you can shoot in log (or raw)  then take the footage into your favourite grading software and create whatever look you wish. You can tweak and tune your skin tones, play with the highlight roll off and create that Hollywood blockbuster look – with both the FS5 and the FS5 II. There is no change to this other than the addition of FS-Raw as standard on the FS5 II.

The big change, is to the cameras default colour science.

FS5II-1-1024x564 PXW-FS5 II Secret Sauce and Venice Colour Science.
New color science from the Sony PXW-FS5 II

Ever since I started shooting on Sony cameras, which was a very long time ago, they have always looked a certain way. If you point a Sony camera at a Rec-709 test chart you will find that the colours are actually quite accurate, the color patches on the chart lining up with the target boxes on a vector scope. All Sony cameras look this way so that if you use several different cameras on the same project they should at least look very similar, even if one of those cameras is a few years old.  But this look and standard was establish many years ago when camera and TV technology was nowhere near as advanced as it is today.

in addition, sometimes accurate isn’t pretty. Television display technology has come a long way in recent years. Digital broadcasting combined with good quality LCD and OLED displays now mean that we are able to see a wider range of colours and a larger dynamic range. Viewers expectations are changing, we all want prettier images.

When Sony launched the high end Venice digital cinema camera a bold step was taken, which was to break away from the standard Sony look and instead develop a new, modern, “pretty” look. A lot of research was done with both cinematographers and viewers trying to figure out what makes a pretty picture. Over several months I’ve watched Pablo, Sony’s colourist at the Digital Motion Picture Center at Pinewood studios develop new LUT’s with this new look for the Venice camera. It hasn’t been easy, but it looks really nice and is quite a departure from that standard Sony look.

The FS5 II includes many aspects of this new look. It isn’t just a change to the colours it is also a change to the default gamma curve that introduces a silky smooth highlight roll off that extends the dynamic range well beyond that normally possible with a conventional Rec-709 gamma curve. A lot of time was spent looking at how this new gamma behaves when shooting people and faces. In particular those troublesome highlights that you get on a nose or cheek that’s catching the light. You know – those pesky highlights that just don’t normally look nice on a video camera.

So as well as rolling off the brightness of these highlights in a smooth way, the color also subtly washes out to prevent the highlight color bloom that can be a video give away. This isn’t easy to do. Any colorist will tell you that getting bright skin tone highlights to look nice is tough. You bring down the brightness and it looks wrong because you loose too much contrast. De-saturate too much and it looks wrong as it just becomes a white blob. Finding the right balance of extended dynamic range with good contrast, plus a pleasing roll-off without a complete white-out is difficult enough to do in a grading suite where you can tweak and tune the settings for each shot. Coming up with a profile that will work over a vast range of shooting scenarios with no adjustment is even tougher. But it looks to me as though the engineers at Sony have really done a very nice job in the FS5 II.

Going forwards from here I would expect to see, or at least like to see, most of Sony’s future cameras have this new colour science. But this is a big step for Sony to break away from decades of one look and every camera looking more or less the same.  But do remember this change is primarily to the default, “standard” gamma look. It does not effect the FS5 II’s log or raw recordings. There is also going to have to be a set of LUT’s to go with this new color science so that those shooting with with a mix of the baked in look and S-log or raw can make all the footage match. In addition users of other S-Log cameras will want to be able to make their cameras match. I see no reason why this won’t be possible via a LUT or set of LUT’s, within the limitations of each cameras sensor technology.

There has been a lot of people that seem unhappy with the FS5 II. I think many people want a Sony Venice for the price of an FS5. Let’s be realistic, that isn’t going to happen. 10 bit recording in UHD would be nice, but that would need higher bit rates to avoid motion artefacts which would then need faster and more expensive media. If you want higher image quality in UHD or 4K DCI do consider an Atomos recorder and the new ProRes Raw codec. The files are barely any bigger than ProRes HQ, but offer 12 bit quality.

Given that the price of the FS5 II is going to be pretty much the same or maybe even a little lower than the regular FS5 (before you even add any options), I am not sure why so many people are complaining. The FS5-II takes a great little camera, makes it even better and costs even less.


ProRes Raw and Atomos Inferno and Sumo – BIG deal for the FS5 and FS7!!

proresraw-logo ProRes Raw and Atomos Inferno and Sumo - BIG deal for the FS5 and FS7!!Over the last few days there have been various rumours and posts coming from Apple about how they intend to get back to providing decent support for professional users of their computers. Apple have openly admitted that the Trash Can Mac Pro has thermal problems and as a result has become a dead end design, which is why there haven’t been any big updates to the flagship workstation from Apple. Apple have hinted that new workstations are on the way, although it would seem that we won’t see these until next year perhaps.
Another announcement came out today, a new version of FCP-X is to be released which includes support for a new ProRes codec called ProRes Raw. This is BIG!


Raw recordings can be made from certain cameras that have bayer sensors such as the Sony FS5 and FS7. Recording the raw data from the sensor maximises your post production flexibility and normally offers the best possible image quality from the camera. Currently if you record 4K raw with these cameras using an Atomos Shogun or similar the bit rate will be close to 3Gb/s at 24p. These are huge files and the cDNG format used to record them is difficult and clunky to work with.  As a result most users take the raw output from the camera and transform it to S-Log2 or S-Log3 and record it as 10 bit ProRes on the external recorder. This is a bit of a shame as going from 12 bit linear raw to 10 bit S-log means you are not getting the full benefit of the raw output.

Enter ProRes Raw:  ProRes Raw will allow users to record the cameras raw output at a much reduced bit rate with no significant of quality. There are two versions, ProRes Raw and ProRes Raw HQ. The HQ bit rate is around 1Gb/s at 24fps. This is not significantly bigger than the ProRes HQ (880Mb/s) that most users are using now to record the raw, yet the full benefit of 12 bit linear will be retained. A 1TB SSD will hold around an hour of ProRes Raw, compare that to uncompressed raw where you only get around 20 mins and you can see that this is a big step forwards for users of the FS5 in particular.

ProRes Raw (the non HQ version) is even smaller! The files are smaller than typical ProRes HQ files. This is possible because recording raw is inherently more efficient than recording component video.

It is claimed by Apple that ProRes Raw will play back in real time on MacBook Pro’s and iMacs without any additional rendering or external graphics cards, so it obviously isn’t terribly processor intensive. This is excellent news! Within FCP-X the playback resolution can be decreased to bring improved playback performance in less powerful systems or mutistream playback.

It looks like you will be able to record from a 4K DCI  from an FS5 or FS7 at up to 60fps continuously. This breaks through the previous limits for the Shogun of 30fps. The FS7 will be able to record 2K raw at up to 240fps and the FS5 will be able to record 4K raw at 100 and 120fps for 4 seconds. Other raw cameras are also supported by the Atomos recorders at differing frame sizes and frame rates.

At the moment the only recorders listed as supporting ProRes Raw are the Atomos Shogun Inferno and the Sumo19 and it looks like it will be a free update. In addition the DJI Inspire 2 drone and Zenmuse X7 Super 35mm camera will also support ProRes Raw.

Whether you will be able to use ProRes Raw in other applications such as Resolve or Premiere is unclear at this time. I hope that you can (or at least will be able to in the near future).

SEE: Apple Press Release.

SEE: Apple ProRes Raw White Paper




Banding in your footage. What Causes It, is it even there?

Once again it’s time to put pen to paper or fingers to keyboard as this is a subject that just keeps coming up again and again.

People really seem to have a lot of problems with banding in footage and I don’t really fully understand why as it’s something I only ever really encounter if I’m pushing a piece of material really, really hard in post production. General the vast majority of the content I shoot does not exhibit problematic banding, even the footage I shoot with 8 bit cameras.

First things first – Don’t blame it on the bits. Even an 8 bit recording  (from a good quality camera) shouldn’t exhibit noticeable banding. An 8 bit recording can contain up to 13 million tonal values. It’s extremely rare for us to shoot luma only, but even if you do it will still have 235 shades and these steps in standard dynamic range are too small for most people to discern so you shouldn’t ever be able to see them. I think that when most people see banding they are not seeing teeny, tiny almost invisible steps what most people see is something much more noticeable – so where is it coming from?

It’s worth considering at this stage that most TV’s, monitors and computer screens are only 8 bit, sometimes less! So if you are looking at one camera and it’s banding free and then you look at another and you see banding, in both cases you are probably looking at an 8 bit image, so it can’t just be the capture bit depth that causing the problem as you cant see 10 bit steps on an 8 bit monitor.

So what could it be?

A very common cause of banding is compression. DCT based codecs such as Jpeg, MJPEG, H264 etc break the image up into small blocks of pixels called macro blocks. Then all the pixels in each block is processed in a similar manner and as a result sometimes there may be a small step between each block or between groups of blocks across a gradient. This can show up as banding. Often we see this with 8 bit codecs because typically 8 bit codecs use older technology or are more highly compressed. It’s not because there are not enough code values. Decreasing the compression ratio will normally eliminate the stepping.

Scaling between bit depths or frame sizes is another very common cause of banding. It’s absolutely vital that you ensure that your monitoring system is up to scratch. It’s very common to see banding in video footage on a computer screen as the video data levels are different to computer data levels and in addition there may also be some small gamma differences so the image has to be scaled on the fly. In addition computer desktops runs at one bit range, the HDMI output another, so all kinds of conversions are taking place that can lead to all kinds of problems when you go from a video clip, to computer levels, to HDMI levels. See this article to fully understand how important it is to get your monitoring pipeline properly sorted.

Look Up Tables (LUT’s) can also introduce banding. LUT’s were never really intended to be used as a quick fix grade, the intention was to use them as an on-set reference or guide, not the final output. The 3D LUT’s that we typically use for grading break the full video range into bands and each band will apply a slightly different correction to the footage than the band above or below. These bands can show up as steps in the LUT’s output, especially with the most common 17x17x17 3D LUT’s. This problem gets even worse if you apply a LUT and then grade on top – a really bad practice.

Noise reduction – In camera or postproduction noise reduction will also often introduce banding. Very often pixel averaging is used to reduce noise. If you have a bunch of pixels that are jittering up and down taking an average value for all those pixels will reduce the noise, but then you can end up with steps across a gradient as you jump from one average value to the next. If you shoot log it’s really important that you turn off any noise reduction (if you can) when you are shooting because when you grade the footage these steps will get exaggerated. Raising the ISO (gain) in a camera also makes this much worse as the cameras built in NR will be working harder, increasing the averaging to compensate the increased noise.

Coming back to 8 bit codecs again – Of course a similar quality 10 bit codec will normally give you more picture information than an 8 bit one. But we have been using 8 bits for decades, largely without any problems. So if you can shoot 10 bit you might get a better end result. But also consider all the other factors I’ve mentioned above.


Skills and knowledge in TV and video production are not keeping up with the technology.

TV and video production, including digital cinema is a highly technical area. Anyone that tells you otherwise is in my opinion mistaken. Many of the key jobs in the industry require an in depth knowledge of not just the artistic aspects but also the technical aspects.
Almost everyone in the camera department, almost everyone in post production and a large portion of the planning and pre-production crew need to know how the kit we use works.
A key area where there is a big knowledge gap is gamma and color. When I was starting out in this business I had a rough idea of what gamma and gamut was all about. But then 10 years or more ago you didn’t really need to know or understand it because up to then we only ever had variations on 2.2/2.4 gamma. There were very few adjustments you could make to a camera yourself and if you did fiddle, generally you would often create more problems than you solved. So those things were just best left alone.
But now it’s vital that you fully understand gamma, what it does, how it works and what happens if you have a gamma miss-match. But sadly so many camera operators (and post people) like to bury their heads in the sand using the excuse “I’m an artist – I don’t need to understand the technology”. Worse still are those that think they understand it, but in reality do not, mainly I think, due to the spread of miss-information and bad practices that become normal. As an example shooting flat seems to mean something very different today to what it meant 10 years ago. 10 years ago it meant shooting with flat lighting so the editor or color grader could adjust the contrast in post production. Now though, shooting flat is often incorrectly used to describe shooting with log gamma (shooting with log isn’t flat, it’s a gamma miss-match that might fool the operator into thinking it’s flat). The whole “shooting flat” miss-conception comes from the overuse and incorrect use of the term on the internet until it eventually became the accepted term for shooting with log.
As only a very small portion of film makers actually have any formal training and even fewer go back to school to learn about new techniques or technologies properly this is a situation that isn’t going to get any better. As we move into an era where, in the short term at least, we will need to start delivering multiple versions of productions in both standard dynamic range as well as several different HDR versions, additionally saving the programme master in another intermediate format. Things are only going to get more complicated and more and more mistakes will be made, technology will be applied and used incorrectly.
Most people are quite happy to spend thousands on a new camera, new recorder or new edit computer. But then they won’t spend any money on training to learn how to get the very best from it. Instead they will surf the net for information and guides of unknown quality and accuracy.
When you hire a crew member you have no idea how good their knowledge is. As it’s normal for most not to have attended any formal courses we don’t ask for certificates and we don’t expect them. But they could be very useful. Most other industries that benefit from a skilled labour force have some form of formal certification process, but our industry does not, so hiring crew, booking an editor etc becomes a bit of a lottery.
Of course it’s not all about technical skills. Creative skills are equally important. But again it’s hard to prove that you do have such skills to a new client. Showreels are all to easy to fake.
Guilds and associations are a start. But many of these can be joined simply by paying the joining or membership fee. You could be a member of one of the highly exclusive associations such as the ASC or BSC, but even that doesn’t mean you know about technology “A” or technique “Z”.
We should all take a close look at our current skill sets. What is lacking, where do I have holes, what could I do better. I’ve been in this business for 30 years and I’m still learning new stuff almost every day. It’s one of the things that keeps life interesting. Workshops and training events can be hugely beneficial and they really can lead to you getting better results. Or it may simply be that a day of training helps give you the confidence that you are doing it right. They are also great opportunities to meet other similar people and network.
Whatever you do, don’t stop learning, but beware the internet, not everything you read is right. The key is to not just read and then do, but to read, understand why, ask questions if necessary, then do. If you don’t understand why, you’ll never be able to adapt the “do” to fit your exact needs.

Should I shoot 8 bit UHD or 10 bit HD?

This comes up so many times, probably because the answer is rarely clear cut.

First lets look at exactly what the difference between an 8 bit and a 10 bit recording is.
Both will have the same dynamic range. Both will have the same contrast. Both will have the same color range. One does not  necessarily have more color or contrast than the other. The only thing you can be sure of is the difference in the number of code values. An 8 bit video recording has a maximum of 235 code values per channel giving 13 million possible tonal values. 10 bit recording has up to 970 code values per channel giving up to 912 million tonal values.
There is a lot of talk of 8 bit recordings resulting in banding because there are only 235 luma shades. This is a bit of a half truth. It is true that if you have a monochrome image there would only be 235 steps. But we are normally making colour images so we are typically dealing with 13 million tonal values, not simply 235 luma shades. In addition it is worth remembering that the bulk of our current video distribution and display technologies are 8 bit – 8 bit H264, 8 bit screens etc. There are more and more 10 bit codecs coming along as well as more 10 bit screens, but the vast majority are still 8 bit.
Compression artefacts cause far more banding problems than too few steps in the recording codec. Most codecs use some form of noise reduction to help reduce the amount of data that needs to be encoded and this can result in banding. Many codecs divide the image data into blocks and  the edges of these small blocks can lead to banding and stepping.
Of course 10 bit can give you more shades. But then 4K gives you more shades too. So an 8 bit UHD recording can sometimes have more shades than a 10 bit HD recording. How is this possible? If you think about it, in UHD each color object in the scene is sampled with twice as many pixels. Imagine a gradient that spans 4 pixels. In 4K you will have 4 samples and 4 steps. In HD you will only have 2 samples and 2 steps, so the HD image might show a single big step while the 4K may have 4 smaller steps. It all depends on how steep the gradient is and how it falls relative to the pixels. It then also depends on how you will handle the footage in post production.
So it is not as clear cut as often made out. For some shots with lots of textures 4K 8 bit might actually give more data for grading than 10 bit HD. In other scenes 10 bit HD might be better.
Anyone that is getting “muddy” results in 4K compared to HD is doing something wrong. Going from 8 bit 4K to 10 bit HD should not change the image contrast, brightness or color range. The images shouldn’t really look significantly different. Sure the 10 bit HD recording might show some subtle textures a little better, but then the 8 bit 4K might have more texture resolution.
My experience is that both work and both have pro’s and con’s. I started shooting 8 bit S-log when the Sony PMW-F3 was introduced 7 years ago and have always been able to get great results provided you expose well. 10 bit UHD would be preferable, I’m not suggesting otherwise (at least 10 GOOD bits are always preferable), but 8 bit works too. 

How can 16 bit X-OCN deliver smaller files than 10 bit XAVC-I?

Sony’s X-OCN (XOriginal Camera Negative) is a new type of codec from Sony. Currently it is only available via the R7 recorder which can be attached to a Sony PMW-F5, F55 or the new Venice cinema camera.

It is a truly remarkable codec that brings the kind of flexibility normally only available with 16 bit linear raw files but with a files size that is smaller than many conventional high end video formats.

Currently there are two variations of X-OCN.

X-OCN ST is the standard version and then X-OCN LT is the “light” version. Both are 16 bit and both contain 16 bit data based directly on what comes off the cameras sensor. The LT version is barely distinguishable for a 16 bit linear raw recording and the ST version “visually lossless”. Having that sensor data in post production allows you to manipulate the footage over a far greater range than is possible with tradition video files. Traditional video files will already have some form of gamma curve as well as a colour space and white balance baked in. This limits the scope of how far the material can be adjusted and reduces the amount of picture information you have (relative to what comes directly off the sensor) .

Furthermore most traditional video files are 10 bit with a maximum of 1024 code values or levels within the recording. There are some 12 bit codecs but these are still quite rare in video cameras. X-OCN is 16 bit which means that you can have up to 65,536 code values or levels within the recording. That’s a colossal increase in tonal values over traditional recording codecs.

But the thing is that X-OCN LT files are a similar size to Sony’s own XAVC-I (class 480) codec, which is already highly efficient. X-OCN LT is around half the size of the popular 10 bit Apple ProRes HQ codec but offers comparable quality. Even the high quality ST version of X-OCN is smaller than ProRes HQ. So you can have image quality and data levels comparable to Sony’s 16 bit linear raw but in a lightweight, easy to handle 16 bit file that’s smaller than the most commonly used 10 bit version of ProRes.

But how is this even possible? Surely such an amazing 16 bit file should be bigger!

The key to all of this is that the data contained within an X-OCN file is based on the sensors output rather than traditional video.  The cameras that produce the X-OCN material all use bayer sensors. In a traditional video workflow the data from a bayer sensor is first converted from the luminance values that the sensor produces into a YCbCr or RGB signal.

So if the camera has a 4096×2160 bayer sensor in a traditional workflow this pixel level data gets converted to 4096×2160 of Green plus 4096×2160 of Red, plus 4096×2160 of Green (or the same of Y, Cb and Cr). In total you end up with 26 million data points which then need to be compressed using a video codec.

Bayer-to-RGB How can 16 bit X-OCN deliver smaller files than 10 bit XAVC-I?However if we bypass the conversion to a video signal and just store the data that comes directly from the sensor we only need to record a single set of 4096×2160 data points – 8.8 million. This means we only need to store 1/3rd as much data as in a traditional video workflow and it is this huge data saving that is the main reason why it is possible for X-OCN to be smaller than traditional video files while retaining amazing image quality. It’s simply a far more efficient way of recording the data from a bayer camera.

Of course this does mean that the edit or playback computer has to do some extra work because as well as decoding the X-OCN file it has to be converted to a video file, but Sony developed X-OCN to be easy to work with – which it is. Even a modest modern workstation will have no problem working with X-OCN. But the fact that you have that sensor data in the grading suite means you have an amazing degree of flexibility. You can even adjust the way the file is decoded to tailor whether you want more highlight or shadow information in the video file that will created after the X-OCN is decoded.

Why isn’t 16 bit much bigger than 10 bit? Normally a 16 bit file will be bigger than a 10 bit file. But with a video image there are often areas of information that are very similar. Video compression algorithms take advantage of this and instead of recording a value for every pixel will record a single value that represents all of the similar pixels. When you go from 10 bit to 16 bit, while yes, you do have more bits of data to record a greater percentage of the code values will be the same or similar and as a result the codec becomes more efficient. So the files size does increase a bit, but not as much as you might expect.

So, X-OCN, out of the gate, only needs to store 1/3rd of the data points of a similar traditional RGB or YCbCr codec. Increasing the bit depth from the typical 10 bit bit depth of a regular codec to the 16 bits of X-OCN does then increase the amount of data needed to record it. But the use of a clever algorithm to minimise the data needed for those 16 bits means that the end result is a 16 bit file only a bit bigger than XAVC-I but still smaller than ProRes HQ even at it’s highest quality level.