Category Archives: Uncategorized

Sony Venice at IBC 2017.

AJC05782-1024x683 Sony Venice at IBC 2017.
Sony Venice Digital Cinema Camera.

As well as several Sony Venice cameras on the Sony booth, Sony will be holding a special IBC screening of the Venice demo films projected in HDR using Dolby Vision in the main big screen auditorium of the RAI at 2.30pm on Friday. Ed Wild the DP of the UK film will also be there to answer any questions. If you are interested in Sony Venice this should not be missed.

Advertisements

Sony RX0 – Is this the ultimate mini-cam (for now at least).

RX0 Sony RX0 - Is this the ultimate mini-cam (for now at least).Sony have just released a rather exciting looking new type of mini-cam, the RX0.

I have not played with one yet, so I can only base my comments on the specs, but the specs are both impressive and exciting.

Most gopro type cameras use tiny sensors packed with pixels. This presents a problem as they tend not to be very light sensitive. However those small sensors when combined with an ultra wide angle lens eliminates the need to focus as the depth of field is vast. But for many applications that’s not what you always want. Sometimes you don’t want an ultra wide fisheye view of the world, sometimes you want to get in a bit closer. Sometimes you want a bit of selective focus. In addition it’s hard to be creative when you have no focus or depth of field control. Talking of control most mini-cams have very, very little in the way of manual control as they don’t have adjustable apertures and as a result rely entirely on variable gain and shutter speeds to control the exposure.

Enter the RX0. The RX0 shares a lot of features with the well regarded RX series of compact stills cameras. It has a 1.0″ type sensor, huge compared to most other minicams. It has 24mm f4 lens so it’s less wide and has a shallower DoF. It can shoot in 4K, it can even record using S-Log2 to capture a greater dynamic range so it may turn out to be a great mini-cam for HDR productions (although how big that dynamic range is is not clear at this time). I wish I had some of these for the HDR shoots I did at the beginning of the year.

It’s a camera you can control manually and it even has a special high speed shutter mode for all but eliminating rolling shutter artefacts.

Want to shoot slow-mo? No problem, the maximum frame rate is 960fps (although I suspect that the image quality drops at the higher frame rates).

It’s still very small and very compact, it’s also waterproof and has a high degree of shock proofing.

I can see myself using this as a time lapse camera or in a VR rig. So many applications for a camera like this. Can’t wait to get my hands on one.

Here’s the Sony product page: https://www.sony.co.uk/electronics/cyber-shot-compact-cameras/dsc-rx0#product_details_default

Beware Exposing To The Right With Log.

That may seem like quite a sensational headline – beware exposing to the right with log – but let me explain.

First of all, I’m not saying you can’t or shouldn’t expose to the right, all I am saying is beware – understand the implications.

First of all what is normally meant by exposing to the right? Well it’s a term that comes from the world of photography where you would use the cameras histogram to measure the exposure levels. Exposing to the right would normally mean setting the shutter speed and aperture so that the levels shown on the histogram are as far to the right as you can get them without going beyond the right side of the histogram. This would ensure a nice bright exposure with lots of light falling on the sensor, something that is normally highly desirable as you get a nice low noise picture once you have adjusted and processed it in your photo editing software.

You can expose to the right with a video camera too. However when shooting with Rec-709 or conventional gammas this can often result in nasty looking highlights thanks to the default knee settings, so it’s not normally a good idea for 709 and standard gammas.

With log or raw as there is no highlight roll off you can expose to the right and it should give you a nice bright exposure… or will it?????

The problem with exposing to the right is that you are exposing for the highlights in the scene. If shooting a low contrast or low dynamic range scene this isn’t going to cause any problems as exposing to the right will mean that everything in the scene is nice and bright.

But if shooting a high dynamic range scene, say an outdoor scene with bright clouds in the sky but large areas of shadow, the exposure will be optimised for the highlights. The mid range and shadows may end up too dark. On a sunny day if shooting a person with their back to the sun the sky could easily be 6 or 7 stops brighter than the skin tones. If you expose for the sky/highlights the skin tones will be 1 or 2 stops darker than the basic exposure level recommended for most  log curves.

(S-log2/3 has 14 stops. At the base exposure you have 6 stops above middle grey and 8 below. Skin tones are normally between 1 and 2 stops above middle grey. So if the sky/highlights are 6 stops above the skin tones, then exposing for the highlights will put the skin tones where middle grey should be, which is 1 stop under exposed and 2 stops below where I would normally like to see skin tones when shooting with log or raw).

The first thing a viewer will notice when they look at a scene with faces or people will be the skin tones. If these have been under exposed they will be grainy and less than ideal. The viewer will notice noise and grain and poor shadows long before they look at the brightest highlights. Shooting log and protecting the highlights or exposing to the right will often compromise the all important mid tones because you are exposing for the highlights, not the midrange. In addition exposing for highlights with a high dynamic range scene can often push the shadows down in level and they will end up noisy and grainy. The biggest issue with exposing to the right is that it’s extremely difficult to estimate how many stops there are between your mid tones and the highlights, so you never know quite where your mid tones are falling.

(Midtones – generally a white piece of paper or a 90% reflectivity white card would be considered to be the top end of the mid tones. Go down about 2.5 stops from white and you hit middle grey  (18% grey card). This range between middle grey and white is where skin tones, plants, most animals etc will be and it probably the most important part of most images).

An important consideration with log and raw is that there is no highlight roll off. Standard gammas (with the default knee found on almost every camera) , cinegammas, hypergammas etc all roll off the highlights. That is to say that as you approach the peak recording level the contrast is reduced as the highlights are squeezed together to try to extend the dynamic range. This reduction in contrast means that it is very difficult, if not impossible, to recover any nice, useable picture information out of anything close to the peak recording level. As a result with conventional gammas we tend to avoid over exposure at all costs as it looks nasty. This highlight roll off is one of the things that gives video the video look.

Log and raw don’t have this same kind of highlight roll off. The image gets brighter and brighter until it clips. With log the stop immediately below clipping contains just as much picture information as any other stop brighter than middle grey. With linear raw the stop just below clipping has more information than any other stop. As a result in post production there is a very large amount of data that can be pulled out of these highlights, even if they are a little clipped! So don’t worry about a few clipped highlights when shooting log. The other thing to remember is there is no TV or monitor that can show these highlights as they really are, so they will never look perfect anyway.

Another thing that happens when exposing to the right is that grading becomes harder than it needs to be. Because the separation between the mid tones and highlights will vary greatly depending on things like whether you are shooting into or away from the sun, when you expose to the right you mid tone brightness will be up and down all over the place. So in post production as well as adding the look that you want to your footage, you are also going to have to spend a lot of time matching the mid range exposure to balance skin tones etc from shot to shot.

Rather than exposing to the right what I recommend is exposing for the mid range. After all this is the important part of the image. To do this you need to use a diffuse reflective shade. The most commonly used shades are a 90% white card and/or an 18% reflectivity grey card – middle grey. Get the mid range right and in most cases the highlights will take care of themselves. Getting the mid range right might mean exposing the mid range  brighter than the recommended levels. But it’s the mid range we need to measure, not the highlights, this is the important part of the image.

90% white is an incredibly important level in the world of film and video. A typical piece of office paper reflects about 92-94% of the light falling on it. Office paper often uses brighteners and special chemicals to make it look bright and white. This white is the brightest diffuse surface you will likely ever see.  Anything brighter than this is normally going to be an actual source of light. The sky perhaps or a direct bounced reflection off a shiny, reflective surface such as the bodywork of a car. So anything brighter than 90% white would normally be considered to be a highlight and to us humans, highlights are visually less important than the mid range. This is why the knee on most video cameras kicks in at around 90%. Anything brighter than 90% is a highlight so the knee only effects highlights and leaves the all important mid range alone.

Middle grey is also very important because it’s a shade of grey that to most people looks to be half way between black and white. Skin tones fall roughly half way between middle grey and white. In addition if you average all the brightness levels within a typical scene the end result is typically very close to middle grey.  Light meters are calibrated to middle grey. The relationship between middle grey and white is fixed. White reflects 90%, middle grey 18%, no matter how bright the actual light source. So whether you are indoors, outside. Whether it’s sunny or overcast, white and middle grey will always be close to 2.5 stops apart. They are extremely useful fixed reference levels.

There are many ways to measure the brightness of a white or grey card. My preferred method is with a waveform display. But you could also use zebras (use a narrow zebra window if you can).  You can also use false colour. Unfortunately it’s very difficult to use a histogram to measure the brightness of a specific target. The histogram is a great measuring tool for photography, but less than ideal for video. If you can’t get a white/grey card out in front of the camera you could consider using a light meter. It’s also worth noting that skin tones sit just a little over half way between middle grey and white, so if you have no other reference you could simply place your skin tones a touch brighter than half way between the values you are targetting for middle grey and white.

Just to be clear: I do still recommend exposing Sony’s S-log2, S-log3 and raw between 1 and 2 stops brighter than the Sony base levels. But the key take-away is that it’s the mid range you need to measure and expose at this level. Exposing to the right using a histogram or waveform and just looking at the peaks and brightest parts of the image does not tell you what is happening in he mid range. Measure the mid range, not the peak brightness.

 

The Pro’s and Con’s of 12 bit linear raw or recording raw to S-Log.

UPDATE: JUST TO BE CLEAR, THERE IS NOTHING WRONG WITH SONY’S 12 BIT LINEAR RAW. BUT YOU REALLY SHOULD BE AWARE OF IT’S LIMITATIONS COMPARED TO 16 BIT RAW OR POSSIBLY EVEN 10 BIT LOG.

This came up in the comments today and it’s something that I get asked about quite a lot.

Sony’s high end cameras, designed for raw – F5, F55, F65 all use 16 bit linear data. This linear data contains an impressively large amount of picture information across the entire range from the darkest shadows to the brightest highlights. This huge amount of data gives footage that can be pushed and pulled in post all over the place. 16 bit raw gives you 65,536 discreet values.

The FS7 and FS5 use 12 bit linear raw. 12 bit data gives you 4096 discreet values, 1/15th of the values, a small fraction of what 16 bit has. This presents a problem as to record 14 stops with linear data you need more than 12 bits.

Not Enough Code Values.

There just aren’t enough code values with only 12 bits (which is why no one else does it). So Sony do some clever math to make it workable. This reduces the amount of tonal steps in in the shadows.  On it’s own this isn’t a huge problem, just make sure you expose brightly to avoid trying to pull to much info out of the shadows and definitely don’t use it for low light. On high key scenes 12 bit raw is very nice indeed, this is where it excels. On low key scenes it can appear very grainy, noisy and shadows often look coarse and lack smooth textures. Expose nice and bright and you will get great highly gradable footage. Expose dark and you will have big problems.

Transcoding can add to the problems.

Where you really can run into problems is if you take 12 bit raw (with it’s reduced shadow data) and convert that to 10 bit log (which has reduced highlight data relative to the scene you are shooting).

What you end up with is 10 bit log with reduced shadow data compared to a straight 10 bit log recording. If you compare the direct 10 bit S-log from an FS7 (or F5/F55) to 10 bit S-log derived from 12 bit raw from an FS5, the FS7 picture will have a little more shadow information while the highlights from both will be similar. So the 10 bit direct log recording from an FS7 will typically be a little better than the 12  bit raw derived log from an FS5 in the shadows (but the raw derived 10bit log will always be better than 8 bit log).

If 4K S-Log is really important to you – get an FS7, F5 or F55.

So I’d much rather have an FS7 (F5 or F55) if I want to shoot UHD or 4K S-log. That’s what these cameras are designed for. But, if you only have an FS5, the raw to log workflow will outperform the limited 8 bit UHD log, so it is still definitely beneficial for FS5 owners to shoot raw and convert it to 10 bit S-Log with an external recorder. But better still record raw, then you really will have a better image.

Raw with the FS7.

On the FS7 the benefits of recording 12 bit raw over 10 bit S-Log are less clear. For bright, well exposed scenes the 12 bit raw will  have a definite  edge. But the files you will create if using an Atomos or Convergent Design recorder are huge compared to the compressed internal recording and that needs to be considered. For low key or under exposed scenes there is no benefit to shooting 12 bit raw you will get nothing extra.

On the FS7 it is not a good idea to take the 12 bit raw output and record it as 10 bit S-Log on an external recorder. While you may have a less compressed codec, you will be compromising the shadows compared to the cameras own internally generated 10 bit log recordings.  In most cases you would be better off simply taking the HDMI output and recording that as it avoids the 12 bit linear shadow bottleneck.

Again though – exposing nice and bright is the key to a good result. Get the data up into the brighter parts of the recording and the raw can be fantastic.

Internal and external log brightness shifts.

When you record S-Log internally on the Sony cameras the recordings use full range data levels to maximise the codec performance. You can use data range (which exceeds the normal video range) as it is assumed the data will be graded and as part of this process restored to video range data for viewing. However when recording on an external recorder the recordings sometimes use full video range rather than data range or if it’s data range don’t have the right metadata. This shouldn’t be a huge problem if the grading software behaves itself and treats each type of content correctly, shifting each to one unified range, but sadly this is rarely the case (especially with Adobe). So not only do the internal and externally recorded images come out with different brightness and contrast, but also LUT’s designed for one don’t work the same with the other. It’s a bit of a minefield to be honest and one of the reason why I prefer to always grade with dedicated grading software like resolve which handles the levels conversions properly (most of the time at least).

ND filters for the Solar Eclipse.

I know many of my readers are planning on travelling to the US and the path of totality to shoot the solar eclipse on the 21st of August.

A couple of words of caution.

First, make sure you never view the sun directly or through an optical viewing device such as a DSLR camera, telescope or lens without covering the lens with a dedicated solar viewing filter.

DON’T try to use sun glasses, welding goggles or conventional ND filters.

Most regular photo ND filters only cut the visible spectrum. Many will pass IR (Infra Red) without much attenuation. When shooting or looking at the sun it’s not just the brightness but also the IR that can damage your eyes or the sensor as this is where most of the heat energy is. So a 16 stop ND might well reduce the brightness of the sun to a useable level for a video camera but may not reduce the damaging IR and heat. This could lead to damage to the cameras own ND filters or the sensor itself.

To look at the sun with your eye’s you MUST use a proper solar filter or solar viewing glasses. This will normally be a silvered reflective filter or film. The silver reflective coating reflects away the harmful and damaging infra red as well as reducing the brightness. If the filters you are using are of the film type, check for pin holes in the film before using them.

On a video camera it is much safer to use IRND filters rather than conventional ND filters if you can or add a good quality IR cut filter in front of the ND filters.  Don’t skimp on the filters you use.

Make sure you have enough ND for the camera to use an aperture wider than f11. If you are having to stop down to f11 or f16 you will not be getting the sharpest possible image due to diffraction effects. On cameras with smaller sensors such as 2/3″ or 1/2″ you really want to have the aperture more open than f8 for the best results, so that means you’ll typically need 16 stops of ND!!

Try to avoid screw on filters. Once the moon completely covers the sun you will want to quickly remove the heavy ND filters. Then once the sun comes out from behind the moon you will need to replace the filters very quickly. So use something that allows you to do this quickly and easily. A mattebox with slide in filter trays or magnetically attached filters are a good way to do this.

If shooting with a very long lens to get the sun to fill the frame you will be surprised by how fast the sun will move through the frame. So you will need a really good fluid head to allow you to slowly track the sun without jarring or bumping the shot.

Anatomy of a shot. Night Scene in Arctic Norway – Fujinon lenses, Stella Lights.

I have just return from one of the most challenging shoots I have been involved in. The shoot took place over 5 days in and around Tromso in Norway. The aim was to gather footage to show off the capabilities of a new type of 4K TV from Phillips.

We shot the Northern Lights, we shot dog sledding , snow mobiles, shots of the city and sailing on the fjords. Each part of the shoot had many challenges and a lot of the shoot took place at night and at night the crew slept in cabins, tents and on the yachts. Shooting from the ice and snow covered deck of a yacht in temperatures well below zero is not something I enjoyed. And to top it all off the weather was pretty grim fro most of the shoot. Heavy snow showers, freezing temperatures and towards the end strong winds.

Because image quality is paramount for this project I choses to use the best lenses I could, but at the same time space and time constraints dictated that zoom lenses would be desirable. We were shooting 16 bit raw as well as XAVC class 480 on my PMW-F5 and some pick-up shots in UHD XAVC-L on a PXW-FS5. For the PMW-F5 the primary lens was the Fujinon Cabrio XK6x20, 20-120mm PL zoom and to ensure we had similar looking images from the FS5 I used the new Fujinon XF 18-55mm. I have to say that I’m quite in love with both of these lenses.

fujinon-xk6x20-20-120mm-t3-5-pl-mount-lens-cc1-e1490981959479 Anatomy of a shot. Night Scene in Arctic Norway - Fujinon lenses, Stella Lights.
Fujinon Cabrio XK6x20 PL mount cinema zoom. A beautiful lens!

The Cabrio 20-120 is a beautiful lens and it’s really nice to have a servo zoom that is truly parfocal. The 20-120 produces really nice images even in the most challenging of conditions and at T3.5 it’s reasonably fast throughout the entire zoom range. This was the lens that I used for the majority of the shoot, in particular for the many night scenes we shot. The E-Mount 18-55 on the FS5 produces images that matched really well with the bigger lens and camera. This is a combination I would love to use on more shoots where the budget will allow.

One particular scene that we had to shoot was particularly challenging. It was a set up shot of a night time arrival of a couple of snowmobiles at a Sami camp site. The Sami people are the indigenous people of Northern Norway and they have a particular style of tent know as a Laavu which is similar to a teepee or wigwam. The idea behind the shot was to have the snow scooters arriving with headlights blazing and for the drivers to then enter the tent lit only by the light of a campfire inside the tent. At the time of the shoot it was snowing heavily and was totally dark. Turn off the lights of the snowmobiles and you could not see a thing.

A007C001_170317I9snwscter-wide-1.-e1490980652498 Anatomy of a shot. Night Scene in Arctic Norway - Fujinon lenses, Stella Lights.
Wide shot of the snowmobiles arriving at the camp in the dark.

While modern cameras like the F5 are very sensitive, the light of a campfire inside a tent will not adequately light a scene like this on it’s own. I didn’t want a totally dark background, so I decided that I would subtly light the trees of the forest that we were in to add some drama and give some depth to the background and a sense of being in a forest.

In-tent-wide-e1490980747645 Anatomy of a shot. Night Scene in Arctic Norway - Fujinon lenses, Stella Lights.
A slightly closer shot of the tent with backlit trees behind it.

As we were travelling continuously on this shoot there was no space for a large or complex lighting kit and the remote location meant we needed battery powered lights. In addition I knew before we left that there was a chance of bad weather so I needed lights that would work whatever mother nature decided to throw at us.

snw-scter-start-e1490980892561 Anatomy of a shot. Night Scene in Arctic Norway - Fujinon lenses, Stella Lights.
A snow scooter comes into the shot. You can see just how heavily it was snowing in this shot.

I decided to take a set of 3 Light & Motion Stella battery powered LED lights. It’s just as well I had the Stella lamps as on top of all the other difficulties of the shoot the weather decided it was not going to play ball. We had to shoot the scene (and much of the shoot) in the middle of a snow storm. Fortunately the Stella lights are completely waterproof, so I didn’t need to worry about rain or snow protection. Just set them up turn them on and use the built in dimmer to set the light output.

To light the scene I set up a Stella Pro 5000 in the woods behind the Sami tent, aimed through the trees and pointed directly towards the camera. I chose to backlight the trees to provide a sense of there being trees rather than lighting them. I felt this would look less lit than throwing a ton of light into the forest from the front and I’m pleased with the result.

20170317_201335-e1490980965481 Anatomy of a shot. Night Scene in Arctic Norway - Fujinon lenses, Stella Lights.
A Light & Motion Stella Pro 5000 was used to back light the trees and tent. The heavy snow was no problem as the light is totally waterproof.

The Stella Pro 5000 is very bright for a compact battery operated light, it’s 5000 lumen 120 degree output that is pretty close to what you would get from a 200W HMI, it’s very bright. It has a very high CRI and gives out great quality daylight balanced light.  It was positioned so that the light itself was behind the tent on a small bank, about 20m back in the woods. You couldn’t see it in the shot, but the light coming through the trees created shafts of light in the snow and the trees appeared as silhouettes. It added depth and interest to what would have otherwise been a near totally black background.

20170317_203855-e1490981224538 Anatomy of a shot. Night Scene in Arctic Norway - Fujinon lenses, Stella Lights.
Light & Motion Stella 2000 used to light the forground, again the lamp is waterproof so bad weather is no problem.

Then to provide a small amount of light so that we could see the riders of the snow scooters as they walked to the tent I used a Stella 2000. I didn’t really want the light from this lamp to be too obvious as this would really make the scene look “lit”. I didn’t need the full 2000 lumen output so I used the built in dimmer to reduce the output to around 70%.

The third light was a small Stella 1000 and this was placed inside the tent with a scrunched up orange gel. The Stella 1000 would typically be used as a camera top light, but it’s full dimmable and produces a very high light quality, making it suitable for many applications. The creases and folds in the orange gel helped break up the light a little creating a less lit look sympathetic to the fire inside the tent.

in-tent-mid-e1490981340247 Anatomy of a shot. Night Scene in Arctic Norway - Fujinon lenses, Stella Lights.
A Stella 1000 with orange gel was used inside the tent to give the light from the fire a small boost.

It allowed me to increase the illumination in the tent, adding to the light from the fire without it being obvious that the tent interior was lit. For some of the shots I had an assistant sit in the tent, out of shot and slowly move the gel in front of the light to add a little movement to the light to mimic the firelight even better.

sihuette-e1490981444887 Anatomy of a shot. Night Scene in Arctic Norway - Fujinon lenses, Stella Lights.
One particular shot on the storyboard was the silhouette of the drivers entering the tent. The Stella 1000 really helped punch trough the canvas sides of the tent.

At the moment I can’t show you the footage. That will have to wait until after the launch of the TV. But I’m really pleased with the way this scene came out. It’s challenging trying to shoot in the dark, in a blizzard, in temperatures well below freezing. Every aspect of getting this scene was hard. Opening a flight case to get out some kit meant getting snow on everything inside it. Just positioning the light up the woods was tough, the snow was up above my knees as I waded through it. Operating the camera is so much harder when it has a rain cover on it. The viewfinder was constantly misting up as snow fell on it non stop. Seeing the witness marks on the lens is difficult (although thankfully the marks on the Fujinon 20-120 are huge and easy to see).

20170317_205922-e1490981701785 Anatomy of a shot. Night Scene in Arctic Norway - Fujinon lenses, Stella Lights.
The Fujinon Cabrio XK6X20 lens all iced up at the end of the day. After shooting out in sub zero temperatures don’t take the camera inside until you are sure you have wrapped for the day!

But sometimes it’s challenges like these that make the job interesting. I know I was cursing and swearing at times trying to make these shots work, but seeing the scene come to life in the grade is all the more rewarding.

I’ll be writing more about the Fujinon 20-120 very soon, so why not subscribe to my blog using the subscribe bottom on the left.

USA Workshops.

I’ll be in the USA presenting workshops in late Feb and March.

There will be workshops in Austin (Feb 28th, Omega Broadcast), Dallas (March 1st), Minneapolis (March 2nd, Z-Systems) and Boston on March 7th.

The workshops will look at the new Sony FS7 II with practical hints and tips for all of Sony’s super 35mm cameras. It will cover gamma curves from 709 to hypergamma to  log. Understanding ISO, CineEI and LUT’s. There will also be an introduction to HDR and post production. More details will follow in the coming days, but these will be great events for anyone that really want’s to get the best possible image quality from their Sony large sensor camera or is interested in learning more about them.

As the details of each of these becomes fixed I will let you know more. As you can see from the dates I have a spare weekend between the Minneapolis and Boston workshops, so if anyone would like a workshop or one to one training on the weekend of March 4/5th please use the contact form to let me know asap.

Here are the registration details for Minneapolis: http://zsyst.com/2017/02/event-alister-chapman-3-2-17/

Sony PMW-F5 and PMW-F55 Version 8 Firmware no longer on the web.

The version 8 firmware update for the PMW-F5 and PMW-F55 cameras is not available on the internet in Europe. In order to get a copy you have to contact prime support or your local service center providing the serial number of your camera, current firmware level and any options installed. Then, if your camera is safe for an end user upgrade they will issue you with a copy of the firmware and the update instructions appropriate for your serial number. If not they will advise you as to where you need to send it or take it for the update.

My understanding is that despite all the warnings there have been a lot of people that have tried to install the firmware on cameras where the install procedure is different. The end result being a camera that will no longer work and the need to replace one of the logic boards which is very expensive. To prevent this they are requiring the serial number before releasing the firmware to you.

I also recommend that if you do have a copy of the version 8 update that you do NOT share it. Please allow Sony to ensure that only owners of those cameras that can be upgraded by the end user get the firmware. This isn’t Sony trying to get more money from you, this is Sony trying to ensure that you don’t end up with an extremely expensive repair bill.

In Europe you should email Prime Support: PrimeSupport@eu.sony.com They will normally get back to you very quickly.

The Firmware is available online from the US site. BUT YOU MUST ENSURE YOUR CAMERA CAN BE USER UPGRADED. DO NOT ATTEMPT IF YOU ARE AT ALL UNSURE.

In the USA I would suggest contacting:

United States service centers:

Eastern Service Facility
Teaneck
Sony Service Center
Sony Electronics Inc.
123 W. Tryon Avenue
Teaneck, New Jersey 07666
Voice: 201-833-5300
FAX: 201-833-5312
E-mail: TeaneckService@am.sony.com

Western Service Facility
Los Angeles
Sony Service Center
Sony Electronics Inc.
2706 Media Center Drive; Suite 130
Los Angeles, California 90065
Voice: 323-352-5000
FAX: 323-352-5039
E-mail: LAService@am.sony.com

In Canada:

Sony of Canada (Customer Service Solutions Group)
Service Operations
211 Placer Court
Toronto, Ontario , M2H 3H9

Sony Montreal Service Center
Sony du Canada Ltée
2886 Boulevard Daniel?Johnson
Laval, QC H7P 5Z7

Fusion Cine
1469 Venables Street
Vancouver, BC V5L 2G1
Professional Technical Support (Vancouver)

Please have the following details ready:

First name
Last name
Email address
Company name if applicable
Business Phone
Country*
Which product do you own?
Serial Number (6 digit number)
Which firmware version is currently installed?
And confirm if the CBK-55PD option installed?*

New 4K Optically Stabilised ActionCam. FDR-X3000

FDR-X300-1024x518 New 4K Optically Stabilised ActionCam. FDR-X3000
Sony FDR-X3000 4K action cam.

Sony have a new 4K action cam with some very cool features. The FDR-X3000 boasts full optical image stabilisation using a Balanced Optical Steady Shot (BOSS) system where the lens and sensor moves to take out the camera shake typical of hand held or body worm motion. This helps produce smoother and sharper images in many typical mini-cam applications. In addition the camera has a 4K Exmor-R sensor providing great (according to Sony) low light performance. The camera records using XAVC-S at up to 100Mb/s and has built in timelapse functions. All in all the spec is very impressive for such a diminutive camera. Pair it with the new Live-View remote and it becomes even more versatile as you can use it as a camcorder (and you can change the focal length of the lens from very wide to medium). The Live View remote can be worn on your wrist, attached to the back of the camera with a novel finger grip or clipped on to a tripod.

Full details over on the Sony website: http://www.sony.co.uk/electronics/actioncam/fdr-x3000-body-kit

In addition at IBC you have the opportunity to win an ActionCam with Sony’s  #SonyFlaminGO competition at IBC.

There will be 4 flamingos (fake, not real) hidden on the Sony booth.

Tweet @sonyproeurope a picture of all four flamingos hidden around the Sony stand either in a montage or separate pics arranged so that “SONY” is spelled out: http://bit.ly/2bz2PXZ