Tag Archives: LUT

Guide to Cine EI – Still Current.

Just a reminder that my guide to shooting with Cine EI for the PMW-F5 and F55 cameras is still just as valid today as it was when I wrote it back in 2013. There have been a few tweaks to the cameras menu here and there, but the principles and basic operation have not changed.

So if you are new to Cine-EI please take a look at the guide. It takes you through how to shoot with Cine EI, which LUT’s to use and how to expose them.

Cine-EI Mode when recording S-Log2/3 and raw on the F5 and F55.

Advertisements

Want to shoot direct to HDR with the PXW-FS7, PMW-F5 and F55?

Sony will be releasing an update for the firmware in the Sony PXW-FS5 in the next few days. This update amongst other things will allow users of the FS5 to shoot to HDR directly using the Hybrid Log Gamma HDR gamma curve and Rec2020 color. By doing this you  eliminate the need to grade your footage and could plug the camera directly in to a compatible HDR TV (the TV must support HLG) and see an HDR image directly on the screen.

But what about FS7 and F5/F55 owners? Well, for most HDR productions I still believe the best workflow is to shoot in S-Log3 and then to grade the footage to HDR. However there may be times when you need that direct HDR output. So for the FS7, F5 and F55 I have created a set of Hybrid Log Gamma LUT’s that you can use to bake in HLG and Rec2020 while you shoot. This gives you the same capabilities as the FS5 (with the exception of the ability to add HLG metadata to the HDMI).

For a video explanation of the process please follow the link to my new Patreon page where you will find the video and the downloadable LUT’s.

Looking For LUT’s for the Sony S-Log2 and S-Log3 Cameras?

This website has a great feature. If you look up in the top left corner of every page you will see a small magnifying glass symbol. If you click on that it will allow you to search the entire site for information… and there’s lots and lots of hint, tips and guides going back many years.

One thing though that a lot of people keep asking about is LUT’s or Look Up Tables. I have lots and they are all (for the moment at least) provided for free. There will be some paid LUT sets coming soon. If you follow the link below you will get a single page that lists all the current LUT articles on the web site. Links to my free LUT sets will be included in these articles.

Remember that LUT’s for S-Log2 and S-Log3 can be used in any camera with S-Log2 or S-Log3. So a LUT for the FS7 can also be used in the FS5 for example.

Here’s the link: http://www.xdcam-user.com/?s=LUT%27s

Using S-Log2 and S-Log3 with the Sony A6300 (with LUT’s to download).

Sony_A6300 Using S-Log2 and S-Log3 with the Sony A6300 (with LUT's to download).The new Sony A6300 is making quite a stir. This compact interchangeable lens camera has an amazing feature set that is very similar to the features found on it’s bigger brothers the A7sII and A7RII.

As a video camera it’s also capable recording using the XAVC-S codec in  both HD and UHD(4K). It can even shoot at 120fps in HD.  It also has picture profiles so you can tailor the look of the pictures or to suit different shooting conditions. The Cinegammas are very useful for challenging lighting conditions as they offer an improved highlight roll-off. As well as the Cinegammas the camera also has the S-Log2 and S-Log3 log gamma curves as well as S-Gamut, S-Gamut3 and S-Gamut3.cine.

Log gamma curves are very different to conventional gamma curves. Conventional gamma curves (like rec-709 or Cinegamma) are designed to produce a pleasing on screen image without any post production work (although the cinegammas do typically benefit with some tweaking in post). To do this conventional gammas keep the mid-range contrast compatible with conventional TV’s and monitors, so the picture has natural contrast when viewed on a TV. Then to help deal with bright highlights conventional gammas use some kind of highlight roll off or knee to increase the brightness range the camera can capture without effecting the mid range.  Unfortunately this means that the highlights are somewhat compromised, looking very flat, lacking contrast and this is often what gives video the “video look”. In addition it also means that if you are over exposed when you shoot, the picture will look bad and no amount of post production correction will ever make it look good. Most TV camera operators will be very familiar with the phrase “protect your highlights”, meaning don’t over expose, if anything under expose a tiny bit to keep the highlights looking good.

Log gamma curves such as S-Log2 and S-Log3 are very different.  They extended the dynamic range that the camera can capture. To do this they no longer try to be directly compatible with conventional TV’s and monitors and just focus on capturing the biggest possible range. The pictures will be made compatible with the TV or monitor via adjustments made during editing or in post production. So working with S-log2 and S-Log3 is a two step process – shooting and grading (grading is the term used for adjusting the look of an image in post production).

Because log gamma no longer needs to have a contrast range that matches the display range, more dynamic range can be squeezed into a conventional recording codec. It also means that there is no longer a need to use any highlight roll off or knee, so there is a lot more picture information in the highlights and brighter parts of the image. As a result exposing log gamma extra brightly is not normally a problem and in many cases brings lot of advantages. Log gamma curves do have a shadow roll off that mimics the real world shadow roll off. As a result log gammas really don’t like being under exposed, instead they prefer to be over exposed. So unlike conventional gamma where we “protect the highlights” with log gamma you need to “protect the shadows”. Under exposed log looks bad. It will lack color and it will be noisy and grainy.

For most camera operators it’s quite disconcerting to start shooting very slightly over exposed as it goes against everything you’ve learnt about shooting with a conventional video camera. But trust me, shooting 1 to 2 stops brighter than the recommended levels given by Sony on the A6300 (and any other Sony Log camera) will normally bring the best results.

I wrote a guide on how to do this with the Sony A7s here: http://www.xdcam-user.com/2014/08/exposing-and-using-slog2-on-the-sony-a7s-part-one-gamma-and-exposure/

The very same techniques can be used with the A6300, A7SII and A7RII. The A6300 etc also have S-Log3, but as these are 8 bit cameras (even when using an external recorder) I would still recommend that you use S-Log2. Besides, viewing and monitoring S-Log3 is tough as the pictures look even flatter than S-Log3.

If you follow the link below you will find a set of LUT’s (Look Up Tables) that can be applied to A6300 footage in post production to give different looks. There are some film-look LUT’s and 709 (normal TV look) LUT’s and in each case there are LUT’s for normal exposure as well as footage exposed 1 stop and 2 stops brighter. If a LUT name includes “1OVER” this means that the LUT is designed to work with footage that has been exposed 1 stop brighter than the levels given by Sony. My recommendation is to shoot at between 1 and 2 stops bright. For both S-Log2 and S-Log3 this would mean setting zebras to 70% and exposing a piece of white paper so that zebras are just starting to appear on the white paper.

If you find these LUT’s useful please consider buying me a coffee or a beer. I’m not paid to write these articles. For the LUT set I would appreciate a Cocktail, but am happy with whatever you feel is appropriate or affordable.


Type



pixel Using S-Log2 and S-Log3 with the Sony A6300 (with LUT's to download).

To download the LUT set please click the link: Alisters A6300 Mega LUT Kit

 

Set of 20 Cube LUT’s for the Sony A7S.

I’ve been doing a lot of work on shooting SLog-2 with the A7s. I realised almost straight away that a set of LUT’s for this camera would really help speed up my grading and testing. In addition as the camera is only 8 bit I have found that I am actually getting the best results from the Slog-2 if I over expose it just a little bit, depending of course on the scene. So I created a set of LUT’s that includes compensation for shooting at the nominal correct exposure as well as either 1 or 2 stops over exposed. In all there are 20 LUT’s in two sets. One is Rec-709 based LUT’s and the other Filmic LUT’s to act as starting points for further grading.

I am in the process of creating the complete workflow and SLog-2 guide for the A7s which I should be publishing later next week which will have much more information on how to use these LUT’s. But in the mean time here are the LUT’s if anyone want’s to play (and I would like feedback on what you think of them).

The LUT naming goes something like this:

AC A7S  709(800) ZERO

AC  (That’s me!).    A7S (The Camera).

709(800) = Output gamma or style.     ZERO = Exposure off set.

The exposure offset refers to the number of stops the footage is over exposed by relative to the normal SLog2 exposure level of Middle Grey at 32% and 90% white at 59%. ZERO menas no exposure offset. 1STOP would be used when the SLog2 was exposed 1STOP over and in this case the LUT then shifts the exposure back down 1 stop to compensate.

709 = Vanilla Rec-709, very contrasty, but limited highlight response and hard clip of over exposure.

709(800) = Rec-709 gamma with 800% (high) dynamic range. Will be slightly low contrast but deals much better with over exposure or bright highlights than vanilla 709.

Film-Like1 = An extended range gamma with highlight roll off (+400% range), slightly de-saturated, slightly more film like color (small red/yellow removed).

Filmic2 = Extended range low contrast gamma with very good over exposure handling. Slightly de-saturated. Good grading start point.

Filmic3 = Similar to Filmic2 but a little more contrast at the expense of a little less highlight roll off.

Click on the links below to download the LUT sets. PLEASE DO NOT HOST THESE ELSEWHERE OR DISTRIBUTE THESE ELSEWHERE OR VIA ANY MEANS OTHER THAN A LINK TO THIS PAGE.

Alisters A7S 709 LUTS v2

Alisters A7S Filmic LUTS set1
If you find the LUT’S useful, please consider buying me a beer or a coffee.


Type



pixel Set of 20 Cube LUT's for the Sony A7S.

Major Update to my Cine-EI guide for the PMW-F55 and PMW-F5

I have just published a major update to my guide to Cine-EI on the PMW-F55 and F5. The guide now goes in to a lot more depth. I have tried to make it easy to understand but it is also quite technical, I have deliberately included the technical background stuff so that hopefully you will understand why Cine-EI and LUT’s work the way they do. I’ve added a whole new section on exposure methods for some of the different LUT’s as well as how to create your own LUT’s.

Please take a look if you use these cameras. Soon I will add a section on post production.

http://www.xdcam-user.com/2013/12/cine-ei-mode-when-recording-s-log23-and-raw-on-the-f5-and-f55/

How to create a user LUT for the PMW-F5 or F55 in Resolve (or other grading software).

It’s very easy to create your own 3D LUT for the Sony PMW-F5 or PMW-F55 using DaVinci Resolve or just about any grading software with LUT export capability. The LUT should be a 17x17x17 or 33x33x33 .cube LUT (this is what Resolve creates by default).

Simply shoot some test Slog2 or Slog3 clips at the native ISO. You must use the same Slog and color space as you will be using in the camera.

Import and grade the clips in Resolve as you wish the final image to look. Then once your happy with your look, right click on the clip in the timeline and “Export LUT”. Resolve will then create a .cube LUT.

Then place the .cube LUT file created by the grading software on an SD card in the PMWF55_F5 folder. You may need to create the following folder structure on the SD card, so first you have a PRIVATE folder, in that there is a SONY folder and so on.

PRIVATE   :   SONY   :    PRO   :   CAMERA   :    PMWF55_F5

Put the SD card in the camera, then go to the File menu and go to “Monitor 3D LUT” and select “Load SD Card”. The camera will offer you a 1 to 4 destination memory selection, choose 1,2,3 or 4, this is the location where the LUT will be saved. You should then be presented with a list of all the LUT’s on the SD card. Select your chosen LUT to save it from the SD card to the camera.

Once loaded in to the camera when you choose 3D User LUT’s you can select between user LUT memory 1,2,3 or 4. Your LUT will be in the memory you selected when you copied the LUT from the SD card to the camera.

LUT’s or LOOK’s when exposing via a LUT on the PMW-F5 or PMW-F55

First of all. You can use either, LUT’s or Looks. But there is a quite marked difference in the way they behave, especially if you use EI gain.

At the native ISO there is little to choose between them. But just to confirm my earlier suspicions about the way the 3D LOOK’s behave I ran a quick test.

I found that when you lower the EI gain, below native, the output level of the LOOK lowers, so that depending on the EI, the clipping, peak level and middle grey values are different. For example on my PMW-F5 at 500 EI the LC709TypeA LUT has a peak output (clipping) level of just 90% while at 2000 ISO it’s 98%. This also means that middle grey of the LOOK will shift down slightly as you lower the EI. This means that for consistent exposure at different low EI’s you may need to offset your exposure very slightly. It also means that at Native EI if the waveform shows peak levels at 90% you are not overexposed or clipped, but at low EI’s 90% will mean clipped Slog, so beware of this peak level offset.

When you raise the EI of the LOOKS, the input clipping point of the Look profile changes. For each stop of EI you add the LOOK will clip one stop earlier than the underlying Slog. For example set the LC709TypeA LUT to 8000 ISO (on my PMW-F5)  and the LOOK itself hard clips 2 stops before the actual SLog3 clips. So your LOOK will make it appear that your Slog is clipped up to 2 stops before it actually is and the dynamic range and contrast range of the LOOK varies depending on the EI, so again beware.

So, the Looks may give the impression that the Slog is clipped if you use a high ISO and will give the impression that you are not using your full available range at a low ISO. I suspect this is a limitation of 3D LUT tables which only work over a fixed 0 to1 input and output range.

What about the 1D LUT’s? Well the LUT’s don’t cover the full range of the Slog curves so you will never see all of your dynamic range at once. However I feel their behaviour at low and high EI’s is a little bit more intuitive than the level shifts and early clipping of the LOOKs.

The 1D LUT’s will always go to 109%. So there are no middle grey shifts for the LUT, no need to compensate at any ISO. In addition if you see any clipping below 109% then it means your SLog is clipping, for example if you set the camera to 500 ISO (on an F5), when you see the 709(800) LUT clipping at 105% it’s because the Slog is also clipping.

At High ISO’s you won’t see the top end of the SLog’s exposure range anyway because the LUT’s range is less than Slog’s range, but the LUT itself does not clip, instead highlights just go up above 109% and this is in my opinion more intuitive behaviour than the clipped LOOK’s that don’t ever quite reach 100% and clip at lower than 100% even when the Slog itself isn’t clipped.

At the end of the day use the ones that work best for you, just be aware of the limitations of both and that the LUT’s and LOOKs behave very differently. I suggest you test and try both before making any firm decisions.

Personally I prefer to use the 709(800) LUT for exposure as the restricted range matches that of most consumer TV’s etc so I feel this gives me a better idea of how the image may end up looking on a consumers TV. Also I find my Slog exposure more accurate as the LUT’s restricted range means you are more likely to expose within finer limits. In addition as noted above I fell the LUT’s behaviour is more predictable and intuitive at high and low EI’s than the LOOK’s.

In addition the higher contrast makes focus easier. I will often switch in and out of the LUT to look at how the Log is coping with any over exposure. This is my personal preference, but I do also use other LUT’s and Looks in particular the 709TypeA from time to time.

Exposing via LUT’s with the PMW-F5 and PMW-F55.

There is an ongoing and much heated debate on another forum about the practicalities of using the LUT’s or Looks built in to the PMW-F5 and PMW-F55 for setting the correct exposure of your SLog or Raw footage. In response to this I put together a very rough video demonstrating how this actually works.

Before watching the video, do please understand the following notes:

Correct exposure is normally determined by the level at which middle grey is recorded. This is true of both video and film production. Light meters are calibrated using middle grey. Expose with a light meter and you will find middle grey at the levels indicated below.

Different gamma curves may use different middle grey levels depending on the contrast required and the dynamic range of the gamma curve. Generally speaking, the greater the dynamic range, the lower middle grey must be set in order to leave room above middle grey for the extra dynamic range. This means that the relationship between middle grey and white will be different from curve to curve. Don’t always expect white to be some fixed value above middle grey. Some of the Sony looks for example LC709TypeA are very low contrast and while middle grey still sits at around 42% (The ITU standard for Rec-709 is 41.7%), because it is a low contrast, high dynamic range curve white is at a lower level, around 70%. The Hypergamma LUT grey points are given by the “G40″ or G33” number – G40 meaning middle grey at 40%.

When you take Slog or raw in to post production it is expected that the middle grey of the recordings will be at the correct nominal level (see chart below). If it is not, when you apply a post production Slog or raw LUT then the footage may appear incorrectly exposed. If you try to bring Slog or raw into an ACES workflow then ACES expects middle grey to be at the correct values. So it is important that your Slog or raw is exposed correctly if you want it to work as expected in post.

log-exposure-1024x190 Exposing via LUT's with the PMW-F5 and PMW-F55.
Correct exposure levels for Sony’s Slog.

Having said all of the above… If you are using CineEI and lowering or raising the EI gain from the native ISO then your Slog or raw will be exposed brighter or darker than the levels above. But I must assume that this is what you want as you are probably looking to adjust the levels in post to reduce noise or cope with an over exposure issue. You may need to use a correction LUT to bring your Slog levels back to the nominal correct levels prior to adding a post production LUT.

Anyway, here’s the video.

ACES: Try it, it might make your life simpler!

ACES is a workflow for modern digital cinema cameras. It’s designed to act as a common standard that will work with any camera so that colourist can use the same grades on any camera with the same results.

A by-product of the way ACES works is that it can actually simplify your post production workflow as ACES takes care of an necessary conversions to and from different colour spaces and gammas. Without ACES when working with raw or log footage you will often need to use LUT’s to convert your footage to the right output standard. Where you place these LUT’s in your workflow path can have a big impact on your ability to grade your footage and the quality or your output. ACES takes care of most of this for you, so you don’t need to worry about making sure you are grading “under the LUT” etc.

ACES works on footage in Scene Referred Linear, so on import in to an ACES workflow conventional gamma or log footage is either converted on the fly from Log or Gamma to Linear by the IDT (Input Device Transform) or you use something like Sony’s Raw Viewer to pre convert the footage to ACES EXR. If the camera shoots linear raw, as can the F5/F55 then there is still an IDT to go from Sony’s variation of scene referenced linear to the ACES variation, but this is a far simpler conversion with fewer losses or image degradation as a result.

The IDT is a type of LUT that converts from the camera’s own recording space to ACES Linear space. The camera manufacturer has to provide detailed information about the way it records so that the IDT can be created. Normally it is the camera manufacturer that creates the IDT, but anyone with access to the camera manufacturers colour science or matrix/gamma tables can create an IDT. In theory, after converting to ACES, all cameras should look very similar and the same grades and effects can be applied to any camera or gamma and the same end result achieved. However variations between colour filters, dynamic range etc will mean that there will still be individual characteristics to each camera, but any such variation is minimised by using ACES.

“Scene Referred” means linear light as per the actual light coming from the scene. No gamma, no color shifts, no nice looks or anything else. Think of it as an actual measurment of the true light coming from the scene. By converting any camera/gamma/gamut to this we should be making them as close as possible as now the pictures should be a true to life linear representation of the scene as it really is. The F5/F55/F65 when shooting raw are already scene referred linear, so they are particularly well suited to an ACES workflow.

Most conventional cameras are “Display Referenced” where the recordings or output are tailored through the use of gamma curves and looks etc so that they look nice on a monitor that complies to a particular standard, for example 709. To some degree a display referenced camera cares less about what the light from the scene is like and more about what the picture looks like on output, perhaps adding a pleasing warm feel or boosting contrast. These “enhancements” to the image can sometimes make grading harder as you may need to remove them or bypass them. The ACES IDT takes care of this by normalising the pictures and converting to the ACES linear standard.

After application of an IDT and conversion to ACES, different gamma curves such as Sony’s SLog2 and SLog3 will behave almost exactly the same. But there will still be differences in the data spread due to the different curves used in the camera and due to differences in the recording Gamut etc. Despite this the same grade or corrections would be used on any type of gamma/gamut and very, very similar end results achieved. (According to Sony’s white paper, SGamut3 should work better in ACES than SGamut. In general though the same grades should work more or less the same whether the original is Slog2 or Slog3).

In an ACES workflow the grade is performed in Linear space, so exposure shifts etc are much easier to do. You can still use LUT’s to apply a common “Look” to a project, but you don’t need a LUT within ACES for the grade as ACES takes care of the output transformation from the Linear, scene referenced grading domain to your chosen display referenced output domain. The output process is a two stage conversion. First from ACES linear to the RRT or Reference Rendering Transform. This is a very computationally complex transformation that goes from Linear to a “film like” intermediate stage with very large range in excess of most final output ranges. The idea being that the RRT is a fixed and well defined standard and all the complicated maths is done getting to the RRT. From the RRT you then add a LUT called the ODT or Output Device Transform to convert to your final chosen output type. So Rec709 for TV, DCI-XYZ for cinema DCP etc. This means you just do one grading pass and then just select the type of output look you need for different types of master.

Very often to simplify things the RRT and ODT are rolled into a single process/LUT so you may never see the RRT stage.

This all sounds very complicated and complex and to a degree what’s going on under the hood of your software is quite sophisticated. But for the colourist it’s often just as simple as choosing ACES as your grading mode and then just selecting your desired output standard, 709, DCI-P3 etc. The software then applies all the necessary LUT’s and transforms in all the right places so you don’t need to worry about them. It also means you can use exactly the same workflow for any camera that has an ACES IDT, you don’t need different LUT’s or Looks for different cameras. I recommend that you give ACES a try.