Tag Archives: monitor

Are We Missing Problems In Our Footage Because We Don’t Use Viewfinders Anymore?

I see it so many times on various forums and user groups – “I didn’t see it until I looked at it at home and now I find the footage is unusable”.

We all want our footage to be perfect all of the time, but sometimes there might be something that trips up the technology that we are using. And that can introduce problems into a shot. The problem is perhaps that these things are not normal. As a result we don’t expect them to be there, so we don’t necessarily look for them. But thinking about this, I also think a lot of it is because very often the only thing being used to view what is being shot is a tiny LCD screen.

For the first 15 years of my career the only viewfinders available were either a monocular viewfinder with a magnifier or a large studio style viewfinder (typically 7″).  Frankly if all you are using is a 3.5″ LCD screen, then you will miss many things!

I see many forum post about these missed image issues on my phone which has a 6″ screen. When I view the small versions of the posted examples of the issue I can rarely see it. But view it full screen and it becomes obvious. So what hope do you have of picking up these issue on location with a tiny monitor screen, often viewed too closely to be in good focus.

A 20 year old will typically have a focus range of around 12 diopters, but by the time you get to 30 that decreases to about 8, by 40 to 5 and 50 just 1 or 2. What that means (for the average person) is that if you are young enough you might be able to focus sufficiently on that small LCD when it’s close enough to your eyes for you to be able to see it properly and be able to see potential problems. But by the time you get to 30 most people won’t be able to adequately focus on a 3.5″ LCD until it’s too far from their eyes to resolve everything it is capable of showing you. If you are hand holding a camera with a 3.5″ screen such that the screen is 30cm or more from your eyes there is no way you can see critical focus or small image artefacts, the screen is just too small. Plus most people that don’t have their eyesight tested regularly don’t even realise it is deteriorating until it gets really bad.

There are very good reason why viewfinders have diopters/magnifiers. They are there to allow you to see everything your screen can show, they make the image appear larger, they keep out unwanted light. When you stop using them you risk missing things that can ruin a shot, whether that’s focus that’s almost but not quite right, something in the background that shouldn’t be there or some subtle technical issue.

It’s all too easy to remove the magnifier and just shoot with the LCD, trusting that the camera will do what you hope it to. Often it’s the easiest way to shoot, we’ve all been there I’m sure. BUT easy doesn’t mean best. When you remove the magnifier you are choosing easy shooting over the ability to see issues in your footage before it’s too late to do something about it.

Advertisements

How We Judge Exposure Looking At an Image And The Importance Of ViewFinder Contrast.

This came out of a discussion about viewfinder brightness where the compliant was that the viewfinder on the FX9 was too bright when compared side by side with another monitor. It got me into really thinking about how we judge exposure when purely looking at a monitor or viewfinder image.

To start with I think it’s important to thing understand a couple of things:

1: Our perception of how bright a light source is depends on the ambient light levels. A candle in a dark room looks really bright, but outside on a sunny day it is not perceived as being so bright. But of course we all know that the light being emitted by that candle is exactly the same in both situations.

2: Between the middle grey of a grey card and the white of a white card there are about 2.5 stops. Faces and skin tones fall roughly half way between middle grey and white. Taking that a step further between what most people will perceive as black, something like a black card, black shirt and a white card there are around 5 to 6 stops and faces will always be roughly 3/4 of the way up that brightness range at somewhere around about 4 stops above black . It doesn’t matter whether that’s outside on a dazzlingly bright day in the desert in the middle East or on a dull overcast winters day in the UK, those relative levels never change.

Now think about this:

If you look at a picture on a screen and the face is significantly brighter than middle grey and much closer to white than middle grey what will you think? To most it will almost certainly appear over exposed because we know that in the real world a face sits roughly 3/4 of the way up the relative brightness range and roughly half way between middle gray and white.

What about if the face is much darker than white and close to middle grey? Then it will generally look under exposed as relative to black, white and middle grey the face is too dark.

The key point here is that we make these exposure judgments based on where faces and other similar things are relative to black and white. We don’t know the actual intensity of the white, but we do know how bright a face should be relative to white and black.

This is why it’s possible to make an accurate exposure assessment using a 100 Nit monitor or a 1000 Nit daylight viewable monitor. Provided the contrast range of the monitor is correct and black looks black, middle grey is in the middle and white looks white then skin tones will be 3/4 of the way up from black and 1/4 down from white when the image is correctly exposed.

But here’s the rub: If you put the 100 Nit monitor next to the 1000 Nit monitor and look at both at the same time, the two will look very, very different. Indoors in a dim room the 1000 Nit monitor will be dazzlingly bright, meanwhile outside on a sunny day the 100 Nit monitor will be barely viewable. So which is right?

The answer is they both are. Indoors, with controlled light levels or when covered with a hood or loupe then the 100 Nit monitor might be preferable. In a grading suite with controlled lighting you would normally use a monitor with white at 100 nits. But outside on a sunny day with no shade or hood the 1000 Nit monitor might be preferable because the 100 nit monitor will be too dim to be of any use.

Think of this another way: Take both monitors into a dark room and take a photo of each monitor with your phone.  The phone’s camera will adjust it’s exposure so both will look the same and the end result will be two photos where the screens will look the same. Our eyes have iris’s just like a cameras and do exactly the same thing, adjust so that the brightness is with the range our eyes can deal with. So the actual brightness is only of concern relative to the ambient light levels.

This presents a challenge to designers of viewfinders that can be used both with or without a loupe or shade such as the LCD viewfinder on the FX9 that which be used both with the loupe/magnifier and without it. How bright should you make it? Not so bright it’s dazzling when using the loupe but bright enough to be useful on a sunny day without the loupe.

The actual brightness isn’t critical (beyond whether it’s bright enough to be seen or not) provided the perceived contrast is right.

When setting up a monitor or viewfinder it’s the adjustment of the black level and black pedestal which alters the contrast of the image (the control of which is confusingly called the brightness control). This “brightness” control is the critical one because if the brightness adjustment raises the blacks by too much then you make the shadows and mids brighter relative to white and less contrasty, so you will tend to expose lower in an attempt to have good contrast and a normal looking mid range. Exposing brighter makes the mids look excessively bright relative to where white is and the black screen surround is.

If the brightness is set too low it pulls the blacks and mids down then you will tend to over expose in an attempt to see details and textures in the shadows and to make the mids normal.

It’s all about the monitor or viewfinders contrast and where everything stits between the darkest and brightest parts pf the image. The peak brightness (equally confusingly set by the contrast control) is largely irrelevant because our perception of how bright this is depends entirely on the ambient light level, just don’t over drive the display.

We don’t look at a VF and think – “Ah that face is 100 nits”.  We think – “that face is 3/4 of the way up between black and white” because that’s exactly how we see faces in all kinds of light conditions – relative levels – not specific brightness.

So far I have been discussing SDR (standard dynamic range) viewfinders. Thankfully I have yet to see an HDR viewfinder because an HDR viewfinder could actually make judging exposure more difficult as “white” such as a white card isn’t very bright in the world of HDR and an HDR viewfinder would have a far greater contrast range than just the 5 or 6 stops of an SDR finder. The viewfinders peak brightness could well be 10 times or more brighter than the white of a white card. So that complicates things as first you need to judge and asses where white is within a very big brightness range. But I guess I’ll cross that bridge when it comes along.

S709 LUT (Venice Look) And 709(800) For LEGAL RANGE PRORES S-Log3 On Atomos and other Recorders.

As noted in my previous post there can be some issues with the way ProRes is recorded on many external monitors as a legal range files rather than Data Range.

Another side effect of this is that LUT’s designed for post production as well as most camera LUT’s don’t work correctly in the monitor. So even when you apply the same LUT in the camera as in the monitor the images look different.

To address this I am providing here 2 sets of LUTs for S-Log3 and SGamut3.cine designed to match the built in s709 and 709(800) Luts included in many Sony cameras. These LUTs are specifically for external recorders and should not be used in camera. When you use these LUT’s the pictures on the monitor should now match the the images in the cameras viewfinder when the built in  LUT has been applied.

You will find 3 LUTs of each type. One for the base exposure, one for footage exposed 1 stop brighter (minus1) and one for footage exposed 2 stops brighter than base (minus2).

As always (to date at least) I offer these as a free download available by clicking on the links below. Try them before you decide then pay what you feel is fair. All contributions are greatly appreciated and it really does help keep this website up and running. If you can’t afford to pay, then just download the LUT’s and enjoy using them, tell your friends and send them here. If in the future you should choose to use them on a paying project, please remember where you got them and come back and make a contribution. More contributions means more LUT offerings in the future.

Click Here to download the 709(800) and S709 Legal In LUTS for external recorders.

If you want to share the LUT’s please do so by a link to this page. You may not sell or distribute these LUTs anywhere without my prior consent.

To make a contribution please use the drop down menu here, there are several contribution levels to choose from.


Your choice:



pixel S709 LUT (Venice Look) And 709(800) For LEGAL RANGE PRORES S-Log3 On Atomos and other Recorders.

Atomos release new Neon range of HDR monitors with Dolby Vision.

This is BIG. Atomos have just announced a completely new range of monitors for HDR production. From 17″ to 55″ these new monitors will compliment their Atomos Sumo, Shogun, Shinobi and Ninja products to provide a complete suite of HDR monitors.

The new Neon displays are Dolby certified and for me this is particularly interesting and perfect timing as I am just about to do the post production on a couple of Dolby certified HDR productions.

I’m just about to leave for the Cinegear show over at Paramount Studios so I don’t have time to list all the amazing features here. So follow the link below to get the full low down on these 10 bit, million:1 contrast monitors.

https://www.atomos.com/neon

Beware multiple power supplies!!

From time to time someone will pop up on a forum or user group with tales of fried SDI boards, dead monitors or dead audio devices. Often the reason for the death of these units seems obscure. One day it all works fine, the next time the monitor is plugged in it stops working.

A common cause of these types of issue is the use of individual power supplies for each device. Most modern power supplies use a technology called “switch mode”. Most “wall wart” power supplies are switch mode. Computers use switch mode power supplies, they are probably the most common type of power supply in use today.

The problem with these power supplies is that the voltage they produce is not tied to a common earth or ground connection. A 12 volt power supply may have an output voltage that measures 12 volts across it’s positive and negative terminals, which is great. But the negative terminal might be many volts above “ground”. Used singly this is not normally a problem but if you use a couple of different power supplies with negative terminals floating at different voltages, if you connect them together current will flow from one to the other as the establish a common base voltage.

As an example if you have a monitor powered by one power supply and a camera powered by another, when you connect the monitor to the camera current may flow down the SDI or HDMI cable from one power supply to the other causing damage to the chips that process the SDI/HDMI signals.

Even if there is no damage this current can lead to audio hum or other electrical noise.

How can you prevent this?

First use only high quality power supplies. Wherever possible try to run everything off a single power supply. Powering the camera from a high capacity power supply and then feeding any connected accessories via D-Tap or Hirose outputs on the camera is good practice. Also powering everything by batteries helps. If you must use separate power supplies then connect everything together before connecting anything to the mains and before turning anything on. This should ensure that any current runs through the shield and ground paths in the cables rather than possibly travelling down the delicate signal part of a connection as you connect things together.

New Atomos Shogun 7 with Dolby Vision Out and 15 stop screen.

So this landed in my inbox today. Atomos are releasing what on paper at least is a truly remarkable new recorder and monitor, the Shogun 7.

For some time now the Atomos Inferno has been my go-to monitor. It’s just so flexible and the HDR screen is wonderful. But the new Shogun 7 looks to be quite a big upgrade.

image New Atomos Shogun 7 with Dolby Vision Out and 15 stop screen.

The screen is claimed to be able to display an astounding 1,000,000:1 contrast ratio and 15+ stops of dynamic range. That means you will be able to shoot in log with almost any camera and see the log output 1:1. No need to artificially reduce the display range, no more flat looking log or raw, just a real look at what you are actually shooting.

I’m off to NAB at the weekend and I will be helping out on the Atomos booth, so I will be able to take a good look at the Shogun 7. If it comes anywhere near to the specs in the press release it will be a must-have piece of kit whether you shoot on an FS5 or Venice!

Here’s the the press release:

Melbourne, Vic – 4 April, 2019:

The new Atomos Shogun 7 is the ultimate 7-inch HDR monitor, recorder and switcher. Precision-engineered for the film and video professional, it uses the very latest video technologies available. Shogun 7 features a truly ground-breaking HDR screen – the best of any production monitor in the world. See perfection on the all-new 1500nit daylight-viewable, 1920×1200 panel with an astounding 1,000,000:1 contrast ratio and 15+ stops of dynamic range displayed. Shogun 7 will truly revolutionize the on-camera monitoring game.

Bringing the real world to your monitor

With Shogun 7 blacks and colors are rich and deep. Images appear to ‘pop’ with added dimensionality and detail. The incredible Atomos screen uses a unique combination of advanced LED and LCD technologies which together offer deeper, better blacks than rival OLED screens, but with the much higher brightness and vivid color performance of top-end LCDs. Objects appear more lifelike than ever, with complex textures and gradations beautifully revealed. In short, Shogun 7 offers the most detailed window into your image, truly changing the way you create visually.

The Best HDR just got better

A new 360 zone backlight is combined with this new screen technology and controlled by the Dynamic AtomHDR engine to show millions of shades of brightness and color, yielding jaw-dropping results. It allows Shogun 7 to display 15+ stops of real dynamic range on-screen. The panel is also incredibly accurate, with ultra-wide color and 105% of DCI-P3 covered. For the first time you can enjoy on-screen the same dynamic range, palette of colors and shades that your camera sensor sees. 

On-set HDR redefined with real-time Dolby Vision HDR output

Atomos and Dolby have teamed up to create Dolby Vision HDR “live” – the ultimate tool to see HDR live on-set and carry your creative intent from the camera through into HDR post production. Dolby have optimised their amazing target display HDR processing algorithm and which Atomos have running inside the Shogun 7. It brings real-time automatic frame-by-frame analysis of the Log or RAW video and processes it for optimal HDR viewing on a Dolby Vision-capable TV or monitor over HDMI. Connect Shogun 7 to the Dolby Vision TV and magically, automatically, AtomOS 10 analyses the image, queries the TV, and applies the right color and brightness profiles for the maximum HDR experience on the display. Enjoy complete confidence that your camera’s HDR image is optimally set up and looks just the way you wanted it. It is an invaluable HDR on-set reference check for the DP, director, creatives and clients – making it a completely flexible master recording and production station.

“We set out to design the most incredibly high contrast and detailed display possible, and when it came off the production line the Shogun 7 exceeded even our expectations. This is why we call it a screen with “Unbelievable HDR”. With multi-camera switching, we know that this will be the most powerful tool we’ve ever made for our customers to tell their stories“, said Jeromy Young, CEO of Atomos.

blobid1_1554376631889 New Atomos Shogun 7 with Dolby Vision Out and 15 stop screen.

Ultimate recording

Shogun 7 records the best possible images up to 5.7kp30, 4kp120 or 2kp240 slow motion from compatible cameras, in RAW/Log or HLG/PQ over SDI/HDMI. Footage is stored directly to reliable AtomX SSDmini or approved off-the-shelf SATA SSD drives. There are recording options for Apple ProRes RAW and ProRes, Avid DNx and Adobe CinemaDNG RAW codecs. Shogun 7 has four SDI inputs plus a HDMI 2.0 input, with both 12G-SDI and HDMI 2.0 outputs. It can record ProRes RAW in up to 5.7kp30, 4kp120 DCI/UHD and 2kp240 DCI/HD, depending on the camera’s capabilities. 10-bit 4:2:2 ProRes or DNxHR recording is available up to 4Kp60 or 2Kp240. The four SDI inputs enable the connection of most Quad Link, Dual Link or Single Link SDI cinema cameras. With Shogun 7 every pixel is perfectly preserved with data rates of up to 1.8Gb/s.

Monitor and record professional XLR audio

Shogun 7 eliminates the need for a separate audio recorder. Add 48V stereo mics via an optional balanced XLR breakout cable. Select Mic or Line input levels, plus record up to 12 channels of 24/96 digital audio from HDMI or SDI. You can monitor the selected stereo track via the 3.5mm headphone jack. There are dedicated audio meters, gain controls and adjustments for frame delay.

AtomOS 10, touchscreen control and refined body

Atomos continues to refine the elegant and intuitive AtomOS operating system. Shogun 7 features the latest version of the AtomOS 10 touchscreen interface, first seen on the award-winning Ninja V. Icons and colors are designed to ensure that the operator can concentrate on the image when they need to. The completely new body of Shogun 7 has a sleek Ninja V like exterior with ARRI anti-rotation mounting points on the top and bottom of the unit to ensure secure mounting. 

AtomOS 10 on Shogun 7 has the full range of monitoring tools that users have come to expect from Atomos, including Waveform, Vectorscope, False Color, Zebras, RGB parade, Focus peaking, Pixel-to-pixel magnification, Audio level meters and Blue only for noise analysis. 

Portable multi-cam live switching and recording for Shogun 7 and Sumo 19

Shogun 7 is also the ultimate portable touch-screen controlled multi-camera switcher with asynchronous quad-ISO recording. Switch up to four 1080p60 SDI streams, record each plus the program output as a separate ISO, then deliver ready-for-edit recordings with marked cut-points in XML metadata straight to your NLE. The current Sumo19 HDR production monitor-recorder will also gain the same functionality in a free firmware update. Sumo19 and Shogun 7 are the ideal devices to streamline your multi-camera live productions. 

Enjoy the freedom of asynchronous switching, plus use genlock in and out to connect to existing AV infrastructure. Once the recording is over, just import the xml file into your NLE and the timeline populates with all the edits in place. XLR audio from a separate mixer or audio board is recorded within each ISO, alongside two embedded channels of digital audio from the original source. The program stream always records the analog audio feed as well as a second track that switches between the digital audio inputs to match the switched feed. This amazing functionality makes Shogun 7 and Sumo19 the most flexible in-the-field switcher-recorder-monitors available.

Shogun 7 will be available in June 2019 priced at $US 1499/ €1499 plus local taxes from authorized Atomos dealers.

Atomos Ninja V, the arctic and the Northern Lights.

I’m sitting here in the UK, Its February and it almost 20c (68f). Very nice indeed for the UK this time of year. Just a couple of weeks ago I was in Northern Norway, up above the arctic circle running one of my annual Northern Lights adventure tours. The weather there was very different. At no time did the temperature get above -15c(5f) and for most of the trip it was around -24c(-11f) both during the day and during the night.

Now, you might consider me a sadist when I say this, but for my Northern Lights trips I normally want it to be -20c or colder. The reason being that when it’s very cold like this we normally get beautifully clear skies. And we need clear skies to see the Aurora.

DSC_0249 Atomos Ninja V, the arctic and the Northern Lights.
Everyone all wrapped up for the hour long ride by snow scooter and sledge to the cabins that we stay at.

After many years of taking a full size video camera up to Norway I decided to go light this year and just take my trusty A7S and A6300 cameras. We get around on snow scooters and on sledges towed behind the snow scooters. This can make lugging around a larger camera tricky and there are times when you just can’t take a big camera. But in order to get the very best from these cameras I also decided to take an Atomos Ninja V.

DSC_0253 Atomos Ninja V, the arctic and the Northern Lights.
Out and about on the snow scooter. It really is a very beautiful place in the winter.

The Ninja V is the first of a new generation of recorders and monitors from Atomos. It’s much smaller than the Shogun range of recorders making it a better size and weight match for smaller cameras and DSLR’s. It has a very, very nice 5″ screen with a maximum brightness of 1000 Nits. The 1000 Nit output and Atomos’s clever way of driving it means it can display both SDR and HDR images depending on how it is set up. A key difference between the Shogun and the Ninja devices is that the Shoguns have both SDI inputs and HDMI inputs while the Ninja only has an HDMI input. But if your using this with a DSLR than only has an HDMI output, as I was, the lack of SDI connectors is not a problem.

DSC_0281 Atomos Ninja V, the arctic and the Northern Lights.
Shooting a sunset with the Ninja V on my A6300. We were way up on the Finnmarksvidda when this image was taken, absolutely in the middle of nowhere and it was -27c!

The build quality of the Ninja V is really good. Most of the body is made of aluminium. The rear part where the slots for the SSD and battery are is made from plastic, but it appears to be a good high quality and tough plastic. A new feature is an “AtomX” expansion port tucked inside the battery compartment. The expansion port allow different modules to be attached to the Ninja V to add functionality such a video over IP (ethernet) using the Newtek NDI protocol for live streaming or to turn the Ninja V into an IP connected monitor. There is also an AtomX sync module that allows you to wirelessly synchronise timecode and control multiple Ninja V”s on a single network and to use Bluetooth remote control. You can find out more about the AtomX modules here https://www.atomos.com/AtomX

Anyway – back to Norway. We were very lucky with the weather, and with the Northern Lights. On the first night at the cabins we stay at the Aurora put on a pretty good display. I was shooting with my Sony A7S with a Sigma Art 20mm f1.4 lens. I was shooting a mix of time-lapse, in which case I simply record the raw frames in the camera on it’s internal SD cards as well as real time video.

DSC09536-small Atomos Ninja V, the arctic and the Northern Lights.
The Aurora put on a great display for us on several nights.

The Northern Lights are only rarely very bright. Most of the time they are fairly dim. So I was using the Sigma lens wide open, shooting at 24fps and with the shutter at 1/24th. The adjusting the cameras ISO to get a nice bright image. At times this did mean I was using some very high ISO’s with a lot of gain. Shooting like this is going to put a lot of strain on any codec. But the Long GOP XAVC-S codec used in the A7S is going to be very hard pushed to not introduce a lot of additional artefacts. In addition my older original A7S can only record HD internally.

By using the Ninja V I was able to record video of the Northern Lights in 4K using the ProRes codec. I used ProRes HQ and ProResHQ uses much less compression than XAVC-S. So even though both the internal recordings and the external recordings are limited to 8 bit (due to the cameras HDMI output limitations rather than any limitation of the Ninja) the ProRes recordings are far more robust and will noise reduce in post much better than the XAVC-S.

DSC_0278-crop Atomos Ninja V, the arctic and the Northern Lights.
Just to prove it really was -27c!!

When you’re working outside for extended periods and it’s -27c(-17f) it’s tough on the gear and tough on you. When shooting the Aurora my camera are outside all night, exposed to the cold. Typical problems include frost and ice on the front element of the lens. The moisture from your own body can easily freeze onto the lens if you stand close to the camera. If you look at the lens to check it for frost and breath out you will leave it coated in ice.

Wires and cables that are soft and flexible in normal temperatures become as stiff as steel rods and can crack and fracture if you try to bend them. All batteries will loose some of their capacity. Very small batteries are worst affected. Larger batteries tend to fair a bit better, but there is a tremendous difference between the way most cheap budget batteries behave in the cold to good quality brand name batteries. For this reason I power my complete setup from a single PAG PAGLink V-Mount battery. The PAGlink batteries are great for all sorts of different applications, but for these trips a big benefit is that a small plug type charger can be used to charge many PAGlink batteries by stacking the batteries together. Then to power multiple devices I use the clip-on PAG Power hub plate to provide 5V for the camera battery adapters that I use, 12V for the lens heaters I use and another 12V feed for the Ninja V.

DSC_0311 Atomos Ninja V, the arctic and the Northern Lights.
This is what the kit looks like when you bring it into the warm after many hours out in the cold. The thing with the yellow strap on the lens is a lens heater to prevent frost from building up on the lens. The lens is a sigma 20mm f1.4, the camera is an A7S and the recorder is the Atomos Ninja V.

After more than a few minutes outside the camera kit itself will have become extremely cold. If you then take that kit inside into a nice warm cabin the warm moist air in the cabin will condense onto the cold camera body. Because the camera body will be extremely cold this will then freeze. Before you know it the camera kit is covered in ice. What you can’t see is that it’s likely that there will also be some ice and moisture inside the camera. It can take hours to warm the camera back up again and get it dried out properly. Bagging the camera before you take it indoors can help, but taking the camera in and out many times over the coarse of a shoot like this can cause a lot of damage. So I prefer to leave all the camera kit outside for the duration of the trip.

DSC_0314 Atomos Ninja V, the arctic and the Northern Lights.
Another view of the frozen Ninja V after a night shooting the Aurora. Don’t worry, the screen isn’t damaged, that’s just frost and ice on the screens surface.

This means that when you come to fire it up you are often trying to switch on an absolutely frozen camera. In the past I have had problems with cold recorders that wouldn’t start up. But I’m pleased to report that the Ninja V always came to life no matter how cold it was. Whenever I pressed the record button it went into record. Operating the touch screen in the cold was not an issue. In fact using touch screen gloves, the Ninja was really easy to use. Pressing small fiddly buttons isn’t easy, even with thin gloves, but the touch screen turned out really easy to work with.

A big change on the Ninja V over previous models is the operating system. The new operating system looks really good and is quite logically laid out. Gone is the old AtomHDR slider that changes the brightness of the screen when in HDR. This is replaced with dedicated viewing modes for Native, 709, PQ HDR and HLG HDR and viewing via a LUT. I prefer the new fixed HDR modes over the Atom HDR slider modes as it eliminates the uncertainty that can sometimes creep in when you use a slider to change the brightness of the display. In my case, when shooting during the day using S-Log2 I would simply select S-Log2 as the source and then use PQ to display an HDR image on the screen. At night when shooting the Aurora I used Rec-709.

DSC_0283 Atomos Ninja V, the arctic and the Northern Lights.
You can see how the normal size 2.5″ SSD sticks out a bit from the side of the Ninja V. The SSDMini’s don’t stick out in the same way. Also note that even though I am shooting using S-Log2 on the A6300 the Ninja V is showing a nice contrasty image thanks to the PQ HDR display option.

The Ninja V can take the same size 2.5″ SSD caddies as the current Shogun recorders. So I was able to use the SSD’s that I already own. However to keep the size of the recorder down it has been designed around a new slightly shorty SSD form factor called SSDMini. When you use a standard size 2.5″ SSD it does stick out from the side of the recorder by about 25mm. If you use an SSDMini it doesn’t stick out at all. SSDMini’s are currently being manufactured by Angelbird and Sony. They have the same sata connector as regular 2.5″ SSD’s and the SSDMini’s can also be used on the larger Atomos Shoguns.

DSC_0286 Atomos Ninja V, the arctic and the Northern Lights.
A basic lightweight but effective setup. Atomos Ninja V, Sony A6300, Miller Compass 15 head and Solo tripod.

By the time we were ready to leave Norway we had seen the Northern Lights on 3 different nights. By day we had seen some beautiful sunrises as well as other optical effects like sun dogs caused by the light from the sun being refracted by ice crystals in the air. The Atomos Ninja V had impressed me hugely. It just worked perfectly despite the extreme cold. It allowed me to record at higher quality than would have been possible without it and turned out to be easy to operate. What more can you want really?

Fancy joining me on one of these trips? Follow the link to find out more: http://www.xdcam-user.com/northern-lights-expeditions-to-norway/

When is a viewfinder a viewfinder and when is it just a small monitor?

It’s interesting to see how the term viewfinder is now used for small monitors rather than monocular viewfinders or shrouded dedicated viewfinders. Unless the a monitor screen is properly shielded from external light then you can only guess at the contrast and brightness of the images feeding it in anything other than a dim/dark room.

This is one of the key reasons why for decades viewfinders have been in fully shrouded hoods, snoots or loupes. As one of the key roles of a viewfinder is to show how your recordings will look for exposure assessment, if it doesn’t have a full shroud then in my opinion it isn’t a viewfinder, it is simply a monitor and exactly what your images will look like is anyones guess depending on the ambient light conditions. Furthermore even a young person with perfect can’t focus properly at less than 6″/150mm and that distance increases with age or in low ambient light. So most people will need a loupe or magnifying lens to be able to make full use of a small HD LCD for critical focus. In order to be able to see the sharpness of an image you need contrast, so an unshaded LCD screen on a sunny day will be next to useless for focus – perhaps this is why I see so many out of focus exterior shots on TV these days?

To be truly useful a viewfinder needs to be viewed in a controlled and dark environment. That’s why for decades it has been normal to use a monocular viewfinder. The eyepiece creates a tightly controlled, nice and dark,  viewing environment. This isn’t always convenient. I will often flip up or remove the eyepiece for certain types of shot. But – if you don’t have the option to fully shade the viewfinder – how do you work with it on a sunny day? On a camera like the FS5 I often find myself using the small, enclosed viewfinder on the back of the camera when the sun is bright. These tiny built in viewfinders are not ideal, but I’d rather have that than a totally washed out LCD or trying to shoot with a jacket over my head as my only option.

So next time you are looking at upgrading the monitor or viewfinder on your camera do try out a good 3rd party monocular viewfinder such as the Zacuto Gratical or Zacuto Eye. Perhaps consider a Small HD monitor with the  Side Finder option. Or an add-on monocular for the existing LCD panel. Without that all important shading and magnification it isn’t really a viewfinder, it’s just a small LCD monitor and in anything other than a very dim environment it’s always going to be tough to judge focus and exposure.

What’s wrong with my viewfinder, my old camera had a much better viewfinder!

This is something that keeps popping up all over the place and it’s not just one camera that attracts this comment. Many do, from the FS5 to the FS7 to the F55, plus cameras from other manufacturers too.
One common factor is that very often this relates to the newer super35mm cameras. Cameras designed to give a more rounded, film like look, often cameras with 4K or higher resolution sensors.
I think many people perceive there is an issue with their viewfinder because they come to these new high resolution, more rounded and film like cameras  from traditional television centric camcorders that use detail correction, coring and aperture correction to boost the image sharpness.
SD and even HD television broadcasting relies heavily on image sharpening so that viewers perceive a crisp, sharp image at any viewing distance and with any screen size (although on really big screens this can really ruin the image).
This works by enhancing and boosting the contrast around edges. This is standard practice on all normal HD and SD broadcast cameras. Especially camera that use a 3 chip design with a prism as the prism will often reduce the images edge contrast.
As most people will prefer a very slightly sharpened HD image or a heavily sharpened SD image over an unsharpened one, it’s sharpened by default. This means that the images those cameras produce will tend to look sharp even on screens that have a lower resolution than that of the camera because the edges remain high contrast even when the viewing resolution is reduced and as a result look sharp.
Most current manufacturer supplied LCD EVF’s run at 1/4″ HD with 940 x 560 pixels (each pixel made up of an RGB 3 dot matrix). In addition many of the 3rd party VF’s such as the very popular Alphatron are the same because they all use the same mass produced, relatively low cost panels – panels that are also used for mobile phones and many other devices. 
 
The problem then is that when you move to a camera that doesn’t add any image sharpening, if you view the cameras image on a lower resolution screen the image looks soft because — it is. There is no detail correction to compensate. Incidentally this is why often these same cameras can look a bit soft in HD and very soft in SD compared to other traditional or detail corrected cameras. But, that slightly softer, less processed look helps contribute to their more film like look. This softness and lack of sharpening/processing is particularly noticeable if you use the focus mag function as you are then looking at an enlarged but completely un-sharpened image.
 
It could be argued that the viewfinder should sharpen the image to compensate. Some of the more expensive viewfinders can do this using their own sharpening processes. But the image that you are then seeing is not the picture that is being recorded and this isn’t always ideal. If it is over done then it can make the entire image look sharp even when it isn’t fully in focus. Really you want to be looking at exactly the image that the camera is recording so that you can spot any potential problems. But that then makes focussing tricky.
 
There are a few 3rd party viewfinders such as the Gratical that have higher resolutions. The Gratical and Eye have screens that are 1280×1024, but in normal use you only use 1280×720 for the image area. This certainly helps, but even the 1:1 pixel zoom on these can look soft and blurry as you loose the viewfinders peaking function when you crop in.
 
Sony’s Venice and the F55/F5 can use Sony’s new DVF-EL200 OLED viewfinder. This costs around £4.5K ($6K) and has a 1920×1080 screen. It’s a beautiful image, but even this needs a fairly good dose of peaking to artificially sharpen the image to be able to see that last critical bit of focus. Again when you zoom in the image looks soft and a bit blurry (even on a Venice) as the camera itself is not adding any sharpening. The peaking function on the DVF-EL200 is quite sophisticated as it only enhances the highest frequency parts of the image, so only sharp edges and fine details are boosted.
 
Go back to the days of black and white tube viewfinders and these used tons of peaking to make them useable. Traditional SD and HD cameras add sharpening to their pictures, but most of our modern large sensor 4K camera do not and as a result often the viewfinder images appear soft compared to what we used to see on older cameras or still see today on cameras that do sharpen the pictures.
 
All of this makes it hard to nail your focus, especially if shooting 4K. Even with a DVF-EL200 on a Venice I struggle at times and rely heavily on image mag (which is still difficult) or better still a much larger monitor with a good sun shade and if necessary some reading glasses to allow you to focus on it up close.

So before you get too critical of your viewfinders performance do also consider all of the above. Try to see how another similar viewfinder looks on your camera (for example an Alphatron on an FS7). Perhaps try a higher resolution viewfinder such as a Gratical, but don’t expect miracles from a small, relatively low resolution screen on a modern digital cinema camera. This really is one of those areas where you can’t beat a big, high resolution screen.

Why you need to sort out your post production monitoring!

One of THE most common complaints I hear, day in, day out, is: There is banding in my footage.

Before you start complaining about banding or other image artefacts ask yourself one very simply, but very important question: Do I know EXACTLY what is happening to my footage within my computer or playback system? As an example, editing on a computer your footage will be starting of at it’s native bit depth. It might then be converted to a different bit depth by the edit or grading software for manipulation. Then that new bit depth signal is passed to the computers graphic card to be displayed. At this point it will possibly be converted to another bit depth as it passes through the GPU and then it will be converted to the bit depth of the computers desktop display. From there you might be passing it down an HDMI cable where another bit depth change might be needed before it finally arrives at your monitor at goodness knows what bit depth.

The two images below are very telling. The first is a photo of a high end TV connected to my MacBook ProRetina via HDMI playing back a 10 bit ProRes file in HD. The bottom picture is exactly the same file being played back out of an Atomos Shogun via HDMI to exactly the same TV. The difference is striking to say the least. Same file, same TV, same resolution. The only difference is the top one is playing back off the computer, the lower from a proper video player. I also know from experience that if I plug in a proper video output device such as a Blackmagic Mini-monitor to the laptops Thunderbolt port I will not see the same artefacts as I do when using the computers built in HDMI.

And this is a not just a quirk of my laptop, my grading suite is exactly the same. If I use the PC’s built in HDMI the pictures suck. Lots of banding and other unwanted artefacts. Play back the same clip via a dedicated, made for video, internal PCI card such as a Decklink card and almost always all of the problems go away. If you use SDI rather than HDMI things tend to be even better.

So don’t skimp on your monitoring path if you really want to know what your footage looks like. Get a proper video card, don’t rely on the computers GPU. Get a decent monitor with an SDI input and try to avoid HDMI for any critical monitoring.

20170620_091235-1024x576 Why you need to sort out your post production monitoring!
Shot viewed on a good quality TV via HDMI from the computers built in graphics card. Notice all the banding.

20170620_091347-1024x576 Why you need to sort out your post production monitoring!
Exactly the same shot/clip as above. But this time played back over HDMI from an Atomos Shogun Flame onto the very same TV. Not how all the banding has gone.