Tag Archives: PMW-F55

Venice Look LUT’s For 14 stop cameras A7, FS5, FS7, F5, F55 etc.

Hello all. So after numerous problems for some people trying to download the official Sony s709 LUT for Venice, I decided to create my own Venice Look LUT’s. These LUT’s have been created using image matching techniques plus some small tweaks and adjustments to make the LUT’s work well with the 14 stop cameras.

Venice is a 15 stop camera with a new sensor and as a result the official s709 LUT’s are not quite right for the current 14 stop cameras like the FS5, PMW-F55, FS7 and even the A7 series. So the LUT that I have created is slightly different to allow for this.

The end result is a LUT that gets you really close to the way Venice looks. It won’t magically turn your FS5 into a Venice, there is something very, very nice about the way Venice handles the extremes of it’s dynamic range, plus Venice has Sony’s best colour filters (similar to the F55 and F65). So Venice will always be that one very nice step up. But these LUT’s should get you close to the default Venice 709 look. This LUT should NOT be used with Venice as it this LUT is restricted to 14 stops.

Of course do remember that the default look and indeed the official s709 LUT was designed as a first pass look. An instant viewing output for a DIT or for on set viewing. It is not really meant to be the final finished look. It would be normal to grade the Venice material, perhaps from scratch rather than using the s709 LUT for the final output. But, s709 is what comes out of the cameras SDI connectors if you use the default LUT/Look. This is what this LUT set mimics, with some tweaks for the lower cost cameras.

This is one of the largest and most comprehensive LUT sets I have ever created. There are versions designed specifically for grading in Resolve or other grading suites. The bulk of the LUT’s are designed to be used with S-Log3 and SGamut3.cine. There are monitoring versions with offsets for use in monitors such as the Atomos range. I have created a set with offsets for both the Zacuto and Small HD viewfinders and monitors and finally I have also created sets of LUT’s for use with S-Log2 so users of the original A7s or those that wish to shoot with S-Log2 on an 8 bit camera are not left out.

The LUT’s work best with the PMW-F55 as this has the closest native color to the Venice camera, but I think they work really well on the rest of the Sony range.

If you find the LUT’S useful, please consider buying me a beer or a coffee using the “Buy Now” button below. There are different drink options depending on what you feel is fair, it takes time to prepare these and there are costs associated with hosting the files. I’m not paid to run this website and every little bit helps and is greatly appreciated.

If you don’t wish to buy me a coffee, that’s cool. But please don’t host the files elsewhere. Feel free to link back here and share the link, but please don’t distribute these anywhere else.

Here’s the link to the zip file containing the my Venice Look LUT set:

Click Here to download Alister’s Venice Look LUTs V2


Type



pixel Venice Look LUT's For 14 stop cameras A7, FS5, FS7, F5, F55 etc.

If you are new to XDCAM-USER.COM please take a look around at the various tutorials, guides, tips and tricks that are hosted here. Click on the green search button at the top right to open a search window or follow the links in the drop down menus at the top of the page. Thanks for visiting!

Advertisements

Why is the white balance limited to 3 presets when using S-Log2, S-Log3 or raw?

This seems to be a source of frustration for many people shooting  raw or using S-Log2 or S-Log3 on a Sony camera. When shooting log and raw you should also be using a matching S-Gamut colour gamut if you want to get the best from the camera and this ties you into one of 3 preset white balances.

With a PXW-FS7, PMW-F5 or F55 it is possible to use custom mode to select a different colour space to mix with S-Log2 or S-Log3 and then have a variable white balance. With the Alpha cameras, PXW cameras such as the FS5 you can choose any Gamut you want in the picture profiles, but I don’t recommend this. For a start, if you don’t use one of the S-Gamuts you will be limited to Rec-709 Gamut, so you won’t be recording  the cameras full colour range. Also in custom mode there are some other things like noise reduction that you really don’t want when shooting S-log2/3 (it can cause banding).

So why is the S-Gamut white balance fixed to the 3 presets for daylight, fluorescent and tungsten? The main reason is to ensure you get the cameras full dynamic range in each colour. White balance is a gain function, it adjusts the gain of the red, green and blue channels so that white objects appear white under differing light sources. So if the light source lacks blue light – making the pictures look excessively warm – you add extra gain to the blue channel to compensate.

But the problem with this is that gain affects dynamic range. When shooting log (or raw) the camera needs to operate the sensor at the optimum gain level to squeeze the highest possible dynamic range from the it. Changing the gain in just one colour channel to shift the white balance could result in a reduction of dynamic range in the channel. This could manifest itself as colours in one channel that clip sooner than the others. This can be really hard to deal with in post production and can show up as things like bright clouds with a colour cast that isn’t in the rest of the picture.

Another potential issue is that because of the way silicon sensors work the blue channel is almost always noisier than the red and green. So you want to keep the gain in the blue channel as low as possible to prevent the pictures getting too noisy. This is particularly important when shooting log as you won’t see your end result until after the images have been graded. So manually shifting the gain of the blue channel in camera to correct the white balance could lead to footage that ends up noisier than you would expect.

So – Sony chose to fix the white balance to 3 carefully tuned presets designed to avoid this situation and maximise the dynamic range. After all, when shooting log or raw it is expected that the footage will be graded anyway, so the white balance will normally be adjusted as part of the post production process.

There are some people that advocate adjusting the FS5’s white balance via the picture profile settings, personally I don’t recommend this or feel that it’s necessary. But yes, you can do this, but just keep a very close eye on your highlights and if you can use monitor with RGB parade to make sure you have equal recording levels for your whites without one colour channel clipping ahead of the others. Also apply a LUT in the monitor that is close to your desired output so that you can keep an eye on the noise levels.

In summary – the white balance is preset to ensure you don’t encounter problems later on. You should be able to fully adjust and fine tune your white balance in post production to a far greater degree than is possible in camera anyway, so don’t worry if the WB is a touch off when shooting.

The only exception to this is the new Sony Venice. Venice has enough dynamic range and enough internal processing power to allow you to make a wide range of white balance adjustments in camera. Hopefully we will see some of this flexibility trickle down to the next generations of lower cost Sony digital cinema cameras.

How can 16 bit X-OCN deliver smaller files than 10 bit XAVC-I?

Sony’s X-OCN (XOriginal Camera Negative) is a new type of codec from Sony. Currently it is only available via the R7 recorder which can be attached to a Sony PMW-F5, F55 or the new Venice cinema camera.

It is a truly remarkable codec that brings the kind of flexibility normally only available with 16 bit linear raw files but with a files size that is smaller than many conventional high end video formats.

Currently there are two variations of X-OCN.

X-OCN ST is the standard version and then X-OCN LT is the “light” version. Both are 16 bit and both contain 16 bit data based directly on what comes off the cameras sensor. The LT version is barely distinguishable for a 16 bit linear raw recording and the ST version “visually lossless”. Having that sensor data in post production allows you to manipulate the footage over a far greater range than is possible with tradition video files. Traditional video files will already have some form of gamma curve as well as a colour space and white balance baked in. This limits the scope of how far the material can be adjusted and reduces the amount of picture information you have (relative to what comes directly off the sensor) .

Furthermore most traditional video files are 10 bit with a maximum of 1024 code values or levels within the recording. There are some 12 bit codecs but these are still quite rare in video cameras. X-OCN is 16 bit which means that you can have up to 65,536 code values or levels within the recording. That’s a colossal increase in tonal values over traditional recording codecs.

But the thing is that X-OCN LT files are a similar size to Sony’s own XAVC-I (class 480) codec, which is already highly efficient. X-OCN LT is around half the size of the popular 10 bit Apple ProRes HQ codec but offers comparable quality. Even the high quality ST version of X-OCN is smaller than ProRes HQ. So you can have image quality and data levels comparable to Sony’s 16 bit linear raw but in a lightweight, easy to handle 16 bit file that’s smaller than the most commonly used 10 bit version of ProRes.

But how is this even possible? Surely such an amazing 16 bit file should be bigger!

The key to all of this is that the data contained within an X-OCN file is based on the sensors output rather than traditional video.  The cameras that produce the X-OCN material all use bayer sensors. In a traditional video workflow the data from a bayer sensor is first converted from the luminance values that the sensor produces into a YCbCr or RGB signal.

So if the camera has a 4096×2160 bayer sensor in a traditional workflow this pixel level data gets converted to 4096×2160 of Green plus 4096×2160 of Red, plus 4096×2160 of Green (or the same of Y, Cb and Cr). In total you end up with 26 million data points which then need to be compressed using a video codec.

Bayer-to-RGB How can 16 bit X-OCN deliver smaller files than 10 bit XAVC-I?However if we bypass the conversion to a video signal and just store the data that comes directly from the sensor we only need to record a single set of 4096×2160 data points – 8.8 million. This means we only need to store 1/3rd as much data as in a traditional video workflow and it is this huge data saving that is the main reason why it is possible for X-OCN to be smaller than traditional video files while retaining amazing image quality. It’s simply a far more efficient way of recording the data from a bayer camera.

Of course this does mean that the edit or playback computer has to do some extra work because as well as decoding the X-OCN file it has to be converted to a video file, but Sony developed X-OCN to be easy to work with – which it is. Even a modest modern workstation will have no problem working with X-OCN. But the fact that you have that sensor data in the grading suite means you have an amazing degree of flexibility. You can even adjust the way the file is decoded to tailor whether you want more highlight or shadow information in the video file that will created after the X-OCN is decoded.

Why isn’t 16 bit much bigger than 10 bit? Normally a 16 bit file will be bigger than a 10 bit file. But with a video image there are often areas of information that are very similar. Video compression algorithms take advantage of this and instead of recording a value for every pixel will record a single value that represents all of the similar pixels. When you go from 10 bit to 16 bit, while yes, you do have more bits of data to record a greater percentage of the code values will be the same or similar and as a result the codec becomes more efficient. So the files size does increase a bit, but not as much as you might expect.

So, X-OCN, out of the gate, only needs to store 1/3rd of the data points of a similar traditional RGB or YCbCr codec. Increasing the bit depth from the typical 10 bit bit depth of a regular codec to the 16 bits of X-OCN does then increase the amount of data needed to record it. But the use of a clever algorithm to minimise the data needed for those 16 bits means that the end result is a 16 bit file only a bit bigger than XAVC-I but still smaller than ProRes HQ even at it’s highest quality level.

The making of “Fire and Iron”.

I’ve been shooting with the Fujinon MK18-55mm lens on my PXW-FS7 and PXW-FS5 since the lens was launched. I absolutely love this lens, but one thing has frustrated me: I really wanted to be able to use it on my PMW-F5 to take advantage of the 16 bit raw. Finally my dreams have come true as both Duclos and MTF have started making alternate rear mounts for both the MK18-55mm and the MK50-135mm.

FRY0684-1024x683 The making of "Fire and Iron".
Fujinon MK18-55mm on my PMW-F5 using Duclos FZ mount adapter.

So, when Fujinon contacted me and asked if I would be interested in shooting a short film with these lenses on my F5 I jumped at the chance. The only catch was that this was just over a week ago and the video was wanted for IBC which means it needed to be ready yesterday. And of course it goes without saying that it has to look good – no pressure then!

First challenge – come up with something to shoot. Something that would show off the key features of these beautiful lenses – image quality, weight, macro etc. I toyed with hiring a model and travelling to the Irish or Welsh coast and filming along the cliffs and mountains. But it’s the summer holidays so there was a risk of not being able to get an isolated location all to ourselves, plus you never know what the weather is going to do. In addition there was no story, no beginning, middle or end and I really wanted to tell some kind of story rather than just a montage of pretty pictures.

So my next thought was to shoot an artist creating something. I spent a weekend googling various types of artistry until I settled on a blacksmith. The video was going to be shown in both SDR and HDR and fire always looks good in HDR. So after dozens of emails and telephone calls I found an amazing looking metalwork gallery and blacksmith that was willing for a reasonable fee to have me and another cameraman take over their workshop for a day (BIG thank you to Adam and Lucy at Fire and Iron check out their amazing works of art).

FRY0619-1024x683 The making of "Fire and Iron".
A blacksmiths forge and art gallery were chosen for the shoot.

Normally I’d carry out a recce of a location before a shoot to take photos and figure out what kind of lights I would need as well as any other specialist or unusual equipment. But this time there simply wasn’t time. We would be shooting the same week and it was already a very busy week for me.

The next step before any shoot for me is some degree of planning. I like to have a concept for the video, at the very least some outline of the shots I need to tell the story, perhaps not a full storyboard, but at least some kind of structure. Once you have figured out the shots that you want to get you can then start to think about what kind of equipment you need to get those shots. In this case, as we would be shooting static works of art I felt that having ways to move the camera would really enhance the video. I have a small Jib as well as some track and a basic dolly that is substantial enough to take the weight of a fully configured PMW-F5 so these would be used for the shoot (I’m also now looking for a slider suitable for the F5/F55 that won’t break the bank, so let me know if you have any recommendations).

PMW-F5-on-jib-with-Fujinon-MK18-55mm-duclos-mount The making of "Fire and Iron".
My PMW-F5 with Fujinon MK18-55mm zoom fitted with Duclos FZ mount.

So the first items on my kit list after the camera and lenses (the lenses were fitted with Duclos FZ rear mounts) was the jib and dolly. To achieve a nice shallow depth of field I planned to shoot as close to the lenses largest aperture of T2.9 as possible. This presents 2 challenges. The F5’s internal ND filters go in 3 stop steps – that’s a big step and I don’t want to end up at T5.6 when really I want T2.9, so 1 stop and 2 stop ND filters and my gucchi wood finished Vocas matte box would be needed (the wood look does nothing to help the image quality, but it looks cool). Oh for the FS7 II’s variable ND filter in my F5!

The second problem of shooting everything at T2.9 with a super 35mm sensor is that focus would be critical and I was planning on swinging the camera on a jib. So I splashed out on a new remote follow focus from PDMovie as they are currently on offer in the UK. This is something I’ve been meaning to get for a while. As well as the remote follow focus I added my Alphatron ProPull follow focus to the kit list. The Fujinon MK lenses have integrated 0.8 pitch gears so using a follow focus is easy. I now wish that I had actually purchased the more expensive PDMovie follow focus kit that has 2 motors as this would allow me to electronically zoom the lens as well as focus it. Oh well, another thing to add to my wish list for the future.

One other nice feature of the Fujinon MK’s is that because they are parfocal you can zoom in to focus and then zoom out for the wider shot and be 100% sure that there is no focus shift and that the image will be tack sharp. Something you can’t do with DSLR lenses.

FRY0650-1024x683 The making of "Fire and Iron".
The PDMovie follow focus motor engages perfectly with the pitch gears on the Fujinon MK series lenses.

Lighting: This was a daylight shoot. Now I have to say that I am still a big fan of old school tungsten lighting. You don’t get any odd color casts, it gives great skin tones, it’s cheap and the variety and types of lamp available is vast. But as we all know it needs a lot of power and gets hot. Plus if you want to mix tungsten with daylight you have to use correction gels which makes the lights even less efficient. So for this shoot I packed my Light and Motion Stella lamps.

FRY0724-1024x683 The making of "Fire and Iron".
Light and Motion Stella lamp fitted with 25 degree fresnel lens.

The Stellas are daylight balanced LED lamps with nice wide 120 degree beams. You can then use various modifiers to change this. I find the 25 degree fresnel and the Stella 5000 a particularly useful combination. This is the equivalent to a 650W tungsten lamp but without the heat. The fresnel lens really helps when lighting via a diffuser or bounce as it controls the spill levels making it easier to control the overall contrast in the shot. The Stella lights have built in batteries or can be run from the mains. They are also waterproof, so even if it rained I would be able to have lights outside the workshop shining in through the windows if needed.

I always carry a number of pop-up diffusers and reflectors of various sizes along with stands and arms specifically designed to hold them. These are cheap but incredibly useful. I find I end up using at least one of these on almost every shoot that I do. As well as a couple of black flags I also carry black drapes to place on the floor or hang from stands to reduce reflections and in effect absorb unwanted light.

FRY0636-1024x683 The making of "Fire and Iron".
Atomos Shogun Flame being used to check exposure and focus.

To check my images on set I use an Atomos Shogun Flame. Rather than mounting it on the camera, for this shoot I decided to pack an extra heavy duty lighting stand to support the Shogun. This would allow my assistant to use the flame to check focus while I was swinging the jib. The HDR screen on the Shogun allows me to see a close approximation of how my footage will look after grading. It  also has peaking and a zoom function to help with focussing which was going to be essential when the camera was up high on the jib and being focussed remotely. I also included a TV-Logic LUM171G which is a 17″ grading quality monitor with 4K inputs. The larger screen is useful for focus and it’s colour accuracy helpful for checking exposure etc.

For audio I packed my trusty UWP-D wireless mic kit and a pair of headphones. I also had a shotgun mic and XLR cable to record some atmos.

As well as all the larger items of kit there’s also all the small bits and bobs that help a shoot go smoothly. A couple of rolls of gaffer tape, crocodile clips, sharpies, spare batteries, extension cables etc. One thing I’ve found very useful is an equipment cart. I have a modiffied rock-n-roller cart with carpet covered shelves. Not only does this help move all the kit around but it also acts as a desk on location. This is really handy when swapping lenses or prepping the camera. It can save quite a bit of time when you have a mobile work area and somewhere you can put lenses and other frequently used bits of kit.

The day before the shoot I set everything up and tested everything. I checked the backfocus adjustment of the lenses. Checked the camera was working as expected and that I had the LUT’s I wanted loaded into both the camera and the Gratical viewfinder. With the camera on the jib I made sure I had the right weights and that everything was smooth. I also checked that my light meter was still calibrated against the camera and that the lens apertures matched what I was expecting (which they did perfectly). Color temperature and colorimetry was checked on the TVLogic monitor.

It’s worth periodically checking these things as there would be nothing worse than rocking up for the shoot only to find the camera wasn’t performing as expected. If you rent a cinema camera package from a major rental house it would be normal to set the camera up on a test bench to check it over before taking it away. But it’s easy to get lazy if it’s your own kit and just assume it’s all OK. A full test like this before an important shoot is well worth doing and it gives you a chance to set everything up exactly as it will be on the shoot saving time and stress at the beginning of the shoot day.

On the morning of the shoot I loaded up the car. I drive a people carrier (minivan to my friends in the USA). Once you start including things like a jib, track and dolly, equipment cart, 6x tungsten lights, 4 x LED lights, plus camera, tripods (including a very heavy duty one for the jib) the car soon fills up. A conventional saloon would not be big enough! One word of caution. I was involved in a car crash many years ago when the car rolled over. I had camera kit in the back of the car and the heavy flight cases did a lot of damage crashing around inside the car. If you do carry heavy kit in the car make sure it’s loaded low down below the tops of the seats. You don’t want everything flying forwards and hitting you on the back of your head in a crash. Perhaps consider a robust steel grill to put between the cargo compartment and the passenger compartment.

On arrival at the location, while it’s very tempting to immediately start unloading and setting up, I like to take a bit of a break and have a tea or coffee first. I use this time to chat with the client or the rest of the crew to make sure everyone knows what’s planned for the day. Taking a few minutes to do this can save a lot of time later and it helps everyone to relax a little before what could be a busy and stressful day.

Now it’s time to unpack and setup. I find it’s better to unpack all the gear at this time rather than stopping and starting throughout the day to unpack new bits of kit. Going to the car, unlocking, unpacking, locking, back to the set etc wastes time. This is where the equipment cart can be a big help as you can load up the cart with all those bits and pieces you “might” need… and inevitably do need.

FRY0702-1024x683 The making of "Fire and Iron".
The blacksmiths workshop. A small dark space.

The blacksmiths workshop was a dark space about 6m x 5m with black walls, open on one side to the outside world.  Blacksmiths forges (so I learnt) are dark so that the blacksmith can see the glow of the metal as it heats up to gauge it’s temperature. On the one hand this was great – huge amounts of relatively soft light coming from one direction. On the other hand the dark side was very dark which would really push the camera and lenses due to the extreme contrast this would create.

fireandirongrab-1024x506 The making of "Fire and Iron".
The seven blacksmithing processes. Frame grab from the film.

We set the jib up inside the workshop to shoot the various processes used by a blacksmith when working with iron and steel. Apparently there are only 7 different processes and anything a blacksmith does will use just these 7 processes or variations of them.

FRY0624-e1504090756869-683x1024 The making of "Fire and Iron".
A small jib was used for much of the shoot.

Most of the shots done on the jib would be shot using the Fujinon MK18-55mm, so that’s the lens we started with. For protection from flying sparks a clear glass filter was fitted to the lens. While the finished film would be a 24p film, most of the filming was 4K DCI at 60fps recording to 16 bit raw. This would give me the option to slow down footage to 24p in post if I wanted a bit of slow motion.

When we did need to do a lens swap it was really easy. The Vocas matte box I have is a swing-away matte box. So by releasing a lever on the bottom of the matte box it swings out of the way of the lens without having to remove it from the rods. Then I can remove the lens and swap it to the other lens. The MK50-135mm is the same size as the MK18-55mm. The pitch gears are also in the same place. So swapping lenses is super fast as the follow focus or any focus motors don’t need to be re-positioned and the matte box just swings back to exactly the same position on the lens. It’s things like this that really separate pro cinema lenses from DSLR and photography lenses.

FRY0662-1024x683 The making of "Fire and Iron".
My wood effect Vocas swing away matte box.

For exposure I used the cameras built in LUT’s and the 709(800) LUT. I set the camera to 800EI. I used a grey card to establish a base exposure, exposing the grey card at 43% (measuring the 709 level). I used a Zacuto Gratical viewfinder which has a great built in waveform display, much better than the one in the camera. I also double checked my light levels with a light meter. I don’t feel that it’s essential to use a light meter but it’s a useful safety net. The light meter is also handy for measuring contrast ratios across faces etc but again if you have a decent waveform display you don’t have to have a light meter.

For the next 3 hours we shot the various processes seen in the video. Trying to get a variety of different shot. But when each process is quite similar, usually involving the anvil and a large hammer it was difficult to come up with shots that looked different.

FRY0690-1024x683 The making of "Fire and Iron".
Getting ready for a close up on the Anvil.

In the afternoon we set up to shoot the interview sequence. The reason for doing this was to not only provide the narrative for the film but also to help show how the lenses reproduce skin tones. The Fujinon MK series lenses are what I would describe as “well rounded”.  That is, not too sharp but not soft either. They produce beautifully crisp pictures without the pictures looking artificially sharp and this really helps when shooting people and faces. They just look really nice.

FRY0728-1024x683 The making of "Fire and Iron".
Shooting the interview sequence.

For the interview shot I used one of the Stella 5000 lights with the 25 degree fresnel lens aimed through a 1m wide diffuser to add a little extra light to supplement the daylight. This allowed me to get some nice contrast across the blacksmiths face and nice “catch light” highlights in his eyes. In addition the little bit of extra light on his face meant that the back wall of the forge would appear just that bit darker due to the increased contrast between his face and the back wall. This is why we light…. not just to ensure enough light to shoot with, I had plenty of light, if I remember right I had a 1 stop ND in the matte box. But to create contrast, it’s the contrast that gives the image depth, it’s contrast that makes an image look interesting.

FRY0740-1024x683 The making of "Fire and Iron".
Last setup of the day shooting the metal artworks. Using a gold reflector and Stella 5000 lamp to add some punch and drama to the shots.

The final stage was to shoot the treasure chest and ornate jars that would show off the the lenses macro and close up performance. The treasure chest is a truly amazing thing. It weighs around 80kg. The locking mechanism is quite fascinating and I still struggle to believe that it was all hand made. The small metal jars are made out of folded and welded steel. It’s the folds in the metal that create the patterns that you see.

Once again we used the jib to add motion to the shots. I also used the macro function of both the MK18-55mm and MK50-135mm lenses. This function allows you to get within inches of the object that you are shooting. It’s a great feature to have and it really adds to the versatility of these lenses.

FRY0742-1024x683 The making of "Fire and Iron".
The Zacuto Gratical has a much better waveform display than the cameras own, so it’s a useful viewfinder to have.

We wrapped at 7pm. Time to pack away the kit. It’s really important not to rush at this stage. Like everyone else I want to get home as quick as I can. But it’s important to pack your kit carefully and properly. There is nothing more annoying than when you start prepping for the next shoot finding that something has been broken or is missing because you rushed to pack up at the end of the previous shoot. Once you have packed everything away don’t forget to do that last walk through all the locations you’ve shot in to make sure you haven’t forgotten something.

I shot a little over hour of material. As it was mostly 60p 4K raw that came to about 1.5TB This was backed up on site using a Nexto-DI NSB25 which is a stand alone device that makes 2 verified copies of everything on 2 different hard drives. The film was edited using Adobe Premiere CC which handles Sony’s raw very easily. Grading was completed using DaVinci Resolve. I spent 2 days editing and a day grading the first version of the film. Then I spent another day re-grading it for HDR and producing the different versions that would be needed. All in, including coming up with the concept, finding the location, prepping, shooting and post took it took about 7 to 8 full work days to put this simple 4 minute film together.

Here’s the behind the scenes video 

Fujinon MK18-55mm and MK50-135mm on my PMW F5 for first tests.

PMW-F5-on-jib-with-Fujinon-MK18-55mm-duclos-mount Fujinon MK18-55mm and MK50-135mm on my PMW F5 for first tests.
My PMW-F5 with Fujinon MK18-55mm zoom fitted with Duclos FZ mount.

Prepping my camera today for a shoot tomorrow. I’ll be shooting with the Fujinon MK18-55mm and MK50-135mm lenses fitted with Duclos FZ mount adapters. I’ve been using the MK18-55mm on my FS7 and FS5 for some time and I have to say I really love this lens. It produces beautiful images with silky smooth bokeh, it’s parfocal and it covers a very hand range of focal lengths. I’ve been wanting to use this lens on my F5 for some time and now at last I can. These lenses work great on the F5 and F55. They are very light compared to most PL lenses and this really helps with the cameras balance, especially if shooting handheld. They are also very cost effective.

PMW-F5-PMW-F55-with-Fujinon-MK18-55mm-duclos-mount Fujinon MK18-55mm and MK50-135mm on my PMW F5 for first tests.
Fujinon MK18-55mm with Duclos FZ adapter on PMW-F5.

The light lens weight means I need less weight on my jib than I would have with most similar PL zoom lenses. Also being nice and fast at T2.9 I know I can get great shallow DoF. Tomorrow I’m going to be shooting 2 amazing artists that create incredibly detailed things out of large lumps of iron and steel. I’ll be shooting examples of some of the finest works of metallic art along with all the key parts of the process of creating them. There will be beauty, iron, steel, heat, flames and sparks. I’ll try to post pictures from the shoot over the weekend and once the video is done it will be online for all to enjoy.

Guide to Cine EI – Still Current.

Just a reminder that my guide to shooting with Cine EI for the PMW-F5 and F55 cameras is still just as valid today as it was when I wrote it back in 2013. There have been a few tweaks to the cameras menu here and there, but the principles and basic operation have not changed.

So if you are new to Cine-EI please take a look at the guide. It takes you through how to shoot with Cine EI, which LUT’s to use and how to expose them.

Cine-EI Mode when recording S-Log2/3 and raw on the F5 and F55.

Version 9 Firmware for the Sony PMW-F5 and PMW-F55 Released.

Looks like I will have a busy day today upgrading cameras. As well as the re-release of Version 4 for the PXW-FS5, Sony have also released version 9 for the PMW-F5 and PMW-F55 cameras.

Version 9 adds some additional high speed frame rates when recording with the R7 recorder. It also adds extra parallel recording functions when using the CBK-WA100 Wireless Adapter and interestingly also adds Long GoP recording (XAVC-L) when shooting at 29.97fps and 59.94fps (sadly no 24,25 or 50fps Long GoP).

The new firmware can be downloaded from here:

PMW-F5

https://www.sony.co.uk/pro/support/software/SET_BPE-SS-1038/210

PMW-F55

https://www.sony.co.uk/pro/support/software/SET_BPE-SS-1039/200

FROM SONY: IMPORTANT NOTE:

 

Please install Version 9 ONLY if your F5 or F55 camera has been successfully updated to Firmware Version 8 or higher. Otherwise, it is very important to note that for the F5 and F55 cameras with the serial numbers range listed in the Release Notes document, the user cannot perform the Upgrade to Version 9 and should contact your local Sony Service agent.

NEW FEATURES:

1) Frame rates for 4K and high frame rate recordings added.
72, 75, 90, 96, and 100 FPS have been added to the available values in “Frame Rate” when the AXS-R7 is attached to the PMW-F55.

2) Compatible with the “Parallel Rec” mode with CBK-WA100 attached.
The “Parallel Rec” mode enables synchronization with the same file name between the XAVC Proxy recording by using the wireless adapter  CBK-WA100.

3) XAVC HD Long added (when the system frequency is set to 29.97 or 59.94).

What is XOCN? Why is it so good, why do we need it?

This time last year I was just starting to earn about a new codec from Sony called XOCN (eXtended Original Camera Negative). XOCN is currently only available with the Sony F5/F55 and the new AXS-R7 raw recorder. Sony’s original R5 raw recorder takes 16 bit sensor data and applies a very mild amount of compression before recording the sensor data as linear raw. I have never seen any compression artefacts when using the 16 bit linear raw and it really is an amazing format to work with. So much so that I will always use it whenever possible.

But now as well as 16 bit linear raw the R7 can record 16 bit linear XOCN. Now, I’ll be completely honest here, I’m really not sure what the difference is between raw and XOCN. As far as I can tell XOCN is very, very similar to raw but sufficiently different to raw to avoid infringing on patents held by other manufacturers for compressed raw. XOCN is more highly compressed than Sony’s raw, but in every test I’ve done I have found it hard to spot any compression problems or any significant difference between XOCN and the original 3:1 raw.

So, I hear you ask…. “If it’s really that good what don’t we just do away with XAVC and use XOCN?” Well that is a good question. It all depends on processing power. XAVC is a traditional codec so inside the codec is a normal video image, so the only thing a computer has to do to play it back is uncompress the codec. XOCN is a compressed wrapper that contains sensor data, in order to view the image the computer has to uncompress the data and then it has to construct the image from the data. So you need a really good graphics card in a decent computer to work with XOCN. But if you do have a decent edit or grading workstation you should find XOCN straight forward to work with, it doesn’t require specialist cards to accelerate the decoding as Red raw does.

The key benefit that XOCN brings over traditional video is that it is 16 bit. 10 bit video is pretty good. In a 10 bit video you have almost 1000 tonal values, not bad when you consider that we have been using 8 bit for decades with only 235 shades. But 16 bit brings the potential for a whopping great 65,535 shades. This starts to make a big difference when you are extensively manipulating the image in post production. Any of you that are in to photography will know that you can push and pull a 16 bit raw photograph far, far further than an 8 bit jpeg. 16 bit video is no different.

But what’s really amazing about XOCN is you get almost all the benefits of linear raw but in a file size smaller than the same resolution 10 bit ProResHQ. If you use XOCN-LT the files are roughly half the size of ProResHQ. This means your media lasts a sensible amount of time and backups, transfers and archiving are all much easier, much faster than with uncompressed raw. Sony’s 3:1 compressed raw from the R5 has always been pretty easy to deal with. XOCN is even easier. Using XOCN-LT you can squeeze well over 2 hours of 16bit 4K on to a 512GB AXS card! In fact the file sizes are only marginally larger than XAVC class 480.

xocn-data-rates-1024x276 What is XOCN? Why is it so good, why do we need it?

The reduction in data rates becomes really significant if you shoot at high frame rates. As 50p and 60p productions become more common XOCN allows production companies to shoot 60fps with the benefits of 16 bit data but with files sizes barely any bigger than 24fps ProResHQ. If you have a Sony PMW-F55 you can shoot at 120fps in 4K using XOCN and the files are twice as big as 24fps raw.

For further information on XOCN please take a look at this page from Sony, it’s very informative and has a very good example of why 16 bit data is important, especially if you are shooting for HDR.

https://pro.sony.com/bbsc/ssr/show-highend/resource.solutions.bbsccms-assets-show-highend-f55xocn.shtml

PMW-F5 and PMW-F55 Version 8 Firmware Now Available.

Last week Sony released firmware version 8 for the PMW-F5 and F55 cameras. The main purpose of this update is to add support for the new AXS-R7 raw recorder as well as a number of bug fixes.  A further addition is the inclusion of the XAVC Class 480 codec, a higher quality version of XAVC-I for more demanding applications.

An important bug fix is the ability to use the latest versions of XQD-G and M series cards.

HOWEVER IT IS VITALLY IMPORTANT THAT YOU DO NOT ATTEMPT TO INSTALL THIS FIRMWARE IF YOUR CAMERA’S SERIAL NUMBER IS IN THE FOLLOWING RANGE:

 

Model Serial Number
PMW-F55 100001 – 100723

500001 – 500036

PMW-F5 100001 – 100781

500001 – 500020

Attempting to install version 8 on cameras in the above serial number ranges may lead to the camera becoming completely unusable unless a very expensive circuit board is replaced.

If your camera’s serial number is in the ranges indicated you should contact a local service center to arrange to have the firmware installed for you (my understanding is this is a one-time requirement, you will be able to do future updates yourself).

FOR EUROPE CUSTOMERS WITH CAMERAS IN ABOVE SERIAL NUMBER RANGE:

Please supply the following information to the following email address PrimeSupport@eu.sony.com and Sony will advise next steps.

First name

Last name

Email address

Company name if applicable

Business Phone

Country*

Which product do you own?      

Serial Number (6 digit number)

Which firmware version is currently installed?

And confirm if the CBK-55PD option installed?*

United States service centers:

Eastern Service Facility

Teaneck
Sony Service Center
Sony Electronics Inc.
123 W. Tryon Avenue
Teaneck, New Jersey 07666
Voice: 201-833-5300
FAX: 201-833-5312
E-mail: TeaneckService@am.sony.com

Western Service Facility

Los Angeles
Sony Service Center
Sony Electronics Inc.
2706 Media Center Drive; Suite 130
Los Angeles, California 90065
Voice: 323-352-5000
FAX: 323-352-5039
E-mail: LAService@am.sony.com

For those located in Canada please contact

Sony of Canada (Customer Service Solutions Group)

Service Operations
211 Placer Court
Toronto, Ontario , M2H 3H9

Sony Montreal Service Center

Sony du Canada Ltée
2886 Boulevard Daniel?Johnson
Laval, QC H7P 5Z7

Fusion Cine

1469 Venables Street
Vancouver, BC V5L 2G1
Professional Technical Support (Vancouver)

In other countries please contact your Sony dealer who should be able to assist.

If, and only if your camera does not fall in the range above then you can perform the update in the usual manner by placing the firmware on an SD card.

DO NOT download and install version 8 firmware if your serial number falls within serial number range detailed above

F55 download here:

https://www.servicesplus.sel.sony.com/sony-software-model-PMWF55.aspx

F5 download here:

https://www.servicesplus.sel.sony.com/sony-software-model-PMWF5.aspx

This firmware can be updated from V7.02, V7.01, V6.02, V6.01 and V6.00. When you want to update F55 and F5 from V5.11 and earlier, you must update to V6.00 first. Please also ensure that your AXS-R5 firmware (if you have one) is also up to date.

Caution with new type 128GB XQD cards in the PMW-F5 and F55 (maybe others too).

xqd-new Caution with new type 128GB XQD cards in the PMW-F5 and F55 (maybe others too).
New, faster G series XQD cards that may be causing problems in some cameras.

UPDATE – IT IS NOW CONFIRMED THAT THE NEW 440MB/s CARDS WILL NOT WORK UNDER V7 OR EARLIER FIRMWARE. A FIX WILL BE INCLUDED IN VERSION 8.

There have been some comments on an older thread about problems with the very latest slightly faster Sony G series 128GB XQD cards with Sony’s F5 and F55 cameras (thanks Justin and Richard).

Many people, including myself use XQD cards with the Sony QDA-EX1 adapter in the PMW-F5 and PMW-F55 as well as other SxS cameras. Up to now I’ve never heard of any real problems, basically they work pretty much the same as SxS cards.

Very recently Sony released a new very slightly faster XQD cards. The old cards have a maximum write speed of 350MB/s while the new cards have a max write speed of 440MB/s. You can see in the image above of one of the new cards that both the read and write speeds are shown on the front of the card. The old (good) cards only show a single speed (400MB/s).

From what I have been able to gather so far the old 128GB G series cards work just fine, but a few people are reporting that the new faster 128GB ones do not. Problems include being unable to format the cards in the camera or unable to write anything to the cards.

If you have any experience of this issue, good or bad, with the new 64GB or 128GB 440MB/s cards please let me know by adding a comment.