Category Archives: PXW-FX9

Experimental s709 LUT Specifically for the FX9.

I’ve had a few people comment that they feel that the PXW-FX9 is a touch green when you shoot S-Log3 and SGamut3.cine and then add the standard Sony s709 V200 LUT in post. So I have created a slightly modified version of the s709 LUT that I have tweaked specifically for the FX9. You can download it using the like below. Do let me know what you think.

AC-s709-for-fx9_v1.2_experimental.cube

Pxw-fx9 Viewfinder Mounting

After playing with a number of FX9’s I have noticed that the way you arrange the viewfinder rods can alter whether the viewfinder sits level or may tilt just a tiny bit. Based on experimentation with several cameras I believe the orientation of the rods and clamps shown in the pictures here works best to ensure the VF stays level.

DSC_0623-1024x576 Pxw-fx9 Viewfinder Mounting
I believe this is the best orientation for the FX9s viewfinder support bars.
DSC_0621-1024x576 Pxw-fx9 Viewfinder Mounting
Another view of the FX9 support bars.
DSC_0619-1024x576 Pxw-fx9 Viewfinder Mounting
Arranging the FX9 support bars this way seems to minimize any VF tilt.

Broadcast safe and direct to air using S-CinEtone and the FX9

S-Cinetone is a combination of both a gamma curve and colour matrix. So you can mix different gammas with the S-Cinetone matrix to get the same colour palette but with different contrast and brightness ranges.

The FX9’s default gamma curve is labelled “original” in the camera’s paint settings. This gamma curve is the closest to the look that the s709 “Venice” LUT provides. One important thing to note about this gamma curve is that it records using full range, so it can exceed 100% and goes all the way up to 109%. This means that it may not be suitable for some broadcast applications where the footage will go direct to air without any grading or post production adjustment.

If you do need a broadcast safe output then you should consider using Hypergamma 1 with the S-Cinetone matrix. The look is very similar to the original matrix, but Hypergamma 1 never exceeds 100% so it is “broadcast safe”.

PXW-FX9 Things that might trip you up.

Using the FX9 more and more in many different configurations I do every now and again come across things that can perhaps don’t work quite as expected. So I thought I would list them here and I will add to the list as I come across anything else.

 

When using an external recorder connected via HDMI: To remotely control the record function of the external recorder you have to enable the record control via HDMI in the Project Menu. But you ALSO have to enable the HDMI timecode output in the Timecode menu. This is not obvious and took me a while to figure out. Also remember to turn off the text overlays via “Monitoring – Output Display – HDMI” if you want a clean output.

Unable to change the SDI or HDMI output format? If Picture Cache is turned on you may not be able to change the monitoring output format settings. Temporarily turn off the picture cache function to change the output settings.

Can’t access any network functions.  Before you can use any of the cameras network capabilities you must first set up a password. Until you set up a password you will not be able to access any of the other network functions.

No Hi/Lo Key Function in CineEI: Currently there is no assignable Hi/Lo Key function in CineEI  (even though the user manual suggests that there is). The workaround is to simply raise and lower the EI to see what’s going on in the highlights and shadows. So if shooting at 800EI, temporarily lowering the EI to 200 allows you to see what’s going on in the highlights. Don’t forget to put the EI back to 800 when you are done.

I Can’t Select MLUTS For Just The Viewfinder or Outputs: A limitation of the FX9 is that you cannot have MLUTs on only the outputs and VF when the main recording format is not UHD.  You can select a global MLUT by selecting MLUT ON for Internal Rec and then the LUT is applied everywhere but this is not what you typically want. The workaround is to not use the MLUTs but instead to use Viewfinder Display Gamma Assist which is the direct equivalent of the 709(800) LUT but it can only be applied to the viewfinder itself. 

As always let me know if you feel there is anything else you would like to add. I will be creating a separate page about the cameras LUT options and limitations which are somewhat confusing. 

Shooting S-Log3 on the PXW-FX9 – Do I need to expose bright?

Having shot quite a bit of S-Log3 content on the new Sony PXW-FX9 I thought I would comment on my exposure preferences. When shooting with an FS5, FS7 or F5, which all use the same earlier generation 4K sensor I find that to get the best results I need to expose between 1 and 2 stops brighter than the 41% for middle grey that Sony recommend. This is because I find my footage to be noisier than I would like if I don’t expose brighter. So when using CineEI on these cameras I use 800EI instead of the base 2000EI

However the FX9 uses a newer state of the art back illuminated sensor. This more sensitive sensor produces less noise so with the FX9 I no longer feel it is necessary to expose more brightly than the base exposure – at either of the base ISO’s. So if I am shooting using CineEI and 800 base, I use 800EI. When shooting at 4000 base, I use 4000 EI. 

This makes life so much easier. It also means that if you are shooting in a mode where LUT’s are not available (such as 120fps HD) then you can use the included viewfinder gamma assist function instead. Viewfinder gamma assist adds the same 709(800) look to the viewfinder as you would get from using the cameras built in 709(800) LUT.  You can use the VF gamma assist to help judge your exposure just as you would with a LUT.  Basically, if it looks right in the viewfinder, it almost certainly is right.

Testing various FX9’s against my Sekonic light meter the cameras CineEI ISO ratings seem to be spot on. So I would have no concerns if using a light meter to expose.  The camera also has a waveform scope and zebras to help guide your exposure.

VF Gamma assist is available in all modes on the FX9, including playback. Just be careful that you don’t have both a LUT on and gamma assist at the same time.

Which Lenses work well with the FX9’s Autofocus?

Below is a list of lenses that have been tested with the FX9’s advanced autofocus system. Generally any Sony E-mount lens will work just fine. The Sony G series lenses are good and the G Master series tend to be even better. 
For third party lenses and adapters the situation is much less clear, so I have decided to list the lenses I have tested and invite others to contribute to this list via the comments area. The list is not exhaustive at this time but I will try to keep adding to it as I am able to try more lenses and and different adapter combinations.

Inclusion of a lens on this list is not a guarantee that it will or will not work, it is simply an indication of how it worked for me or anyone else that adds information about their own experiences. I welcome updates and any further information from any lens or adapter manufacturer.

If there is a lens you have tested on an FX9 please let me know via the comments how it worked so it can be added to the list.

KNOWN TO WORK WELL:

Sony E (super 35mm) FE (full frame) lenses, G and G-Master including Zeiss ZA series. G and G Master  tend to have the best AF performance.

Tamron 28-75 f2.8 Di III RXD E-mount.

KNOWN TO WORK, BUT NOT AS GOOD AS ORIGINAL SONY:

Sigma 20mm f1.4 ART with Sigma MC11 adapter. Works, but a little slow and occasionally hunts.

KNOWN TO NOT PERFORM WELL:

Sigma 20mm f1.4 ART native E-mount (very slow AF, hunting, contrast only?).

Sigma 85mm f1.4 ART native E-mount (very slow AF, a lot of hunting).

Sigma 20mm f1.4 ART Canon EF mount on metabones, comlite or viltrox adapters. Very slow AF, not really useable.

NO GOOD, NO AF:

Tamron EF 16-300mm

Sigma EF 18-250mm

 

PXW-FX9 Feature Wish List

While my website is not officially sanctioned or endorsed by Sony, I do know that many Sony people read it. In addition I often meet members of the Sony design team. So I thought I would create a page where I can collate the features and changes that us users would like to see in future firmware updates. 


This will be a wish list. We may not see anything requested come, but then again maybe we will. Who knows. Some of these may  already be in the pipelines, but until we see a roadmap of some form I will include all wishes that have not already been confirmed as features due to come. So just because something is in the list it doesn’t necessarily mean it isn’t already planned.

Add a comment if there is a feature you feel this camera should have and I’ll add it to the list. I will try to keep the list in order of popularity with the most requested at the top.

PXW-FX9 Feature Wish List:

LUT’s off for record but on for SDI/HDMI/VF when shooting HD (currently LUT’s can be off for record and on for SDI/HDMI/VF when recording UHD, but not HD).

Make it possible to assign the switching of scan modes to an assignable button.

User 3D LUT’s.

2K Center Scan Mode.

Addition of the the higher quality XAVC Class 480 codec.

Anamorphic De-Squeeze.

Ability to add letter box (black bars) to the recordings at 2.39 aspect ratio.

Full Frame 6K 2.39 aspect ratio shooting mode at 50/60P Similar to the Venice full frame 2.39 aspect ratio mode.

The ability to choose the bit depth of the raw output. Currently we know that Full Frame 16bit 24/25/30p is planned. It would be good if you could also choose 12bit for use with legacy raw recorders.

Alternate viewfinder options. Ability to purchase a higher quality viewfinder, perhaps OLED.

Smaller version of the XDCA-FX9 with just the raw option.

VF Overlays outside of the image area (my comment – this I think is unlikely as you need extra processing power to re-scale the image, in addition the resolution of the image will be reduced making focus harder etc. Really you want a higher resolution VF to do this).

Internal raw recording (probably not going to happen due to Red patents).

MI-Shoe to XLR breakout cable or alternate handle with 2x extra XLR connectors on the rear of the handle (note: the XLR-K3M kit includes an MI-Shoe extension cable)

Ability to use CFexpress cards (same slot and similar interface as XQD so might be possible).

Menu option to turn off all viewfinder overlays when recording. Currently 2 options for each overlay, on or off. Suggest third option, off in record so the VF is less cluttered while recording.

High/Low Key function for CineEI as on the F5/F55/Venice (Note: this is listed as an assignable function in the manual, but currently the camera doesn’t have this function).

4K 120fps internal recording (lower bit rate acceptable, similar to FS5 or Alpha cameras).

Add the ability to set the tint to the assignable functions.

Autofocus at all S&Q frame rates.

Assignable button to switch audio monitoring between 1/2 and 3/4.

Audio level meters for channels 3 & 4 on the LCD without having to use the status pages.

Menu option to reverse the direction of the NF filter control dial.

Menu option to set the ND wheel to show stops or ND range 0.6-0.9 etc.

Option to format both XQD cards at once (I have added this as it has been requested but personally think this is quite a dangerous option).

24p as well as 23.98p

 

 

 

 

Sony’s XLR-K3M Includes an MI Shoe relocation cable!

Screenshot-2019-11-29-at-17.19.55 Sony's XLR-K3M Includes an MI Shoe relocation cable!
Sony’s XLR-K3M kit includes an MI Shoe relocation cable.

This is something a lot of people have been asking for. An extension or relocation cable that allows you to place devices that will be connected to a camera via the MI Shoe away from the shoe itself.

But in order to get the MI Shoe relocation cable you have to buy the whole XLR-K3M XLR adapter kit, you can’t get the cable on it’s own. This is a shame as I would like to use the cable with my UWP-D series radio mics. I’m not a fan of having the radio mic receiver right on top of the handle as it tends to stick out and get in the way when you put the camera into most camera bags. But, I don’t really need the XLR adapter.

Anyway, here’s a link to the XLR-K3M for those that really need that cable (or the new XLR adapter).

What is Dual Base ISO and why is it important?

Almost all modern day video and electronic stills cameras have the ability to change the brightness of the images they record. The most common way to achieve this is through the addition of gain or through the amplification of the signal that comes from the sensor. 

On older video cameras this amplification was expressed as dB (decibels) of gain. A brightness change of 6dB is the same as one stop of exposure or a doubling of the ISO rating. But you must understand that adding gain to raise the ISO rating of a camera is very different to actually changing the sensitivity of a camera.

The problem with increasing the amplification or adding gain to the sensor output is that when you raise the gain you increase the level of the entire signal that comes from the sensor. So, as well as increasing the levels of the desirable parts of the image, making it brighter, the extra gain also increases the amplitude of the noise, making that brighter too.

Imagine you are listening to an FM radio. The signal starts to get a bit scratchy, so in order to hear the music better you turn up the volume (increasing the gain). The music will get louder, but so too will the scratchy noise, so you may still struggle to hear the music. Changing the ISO rating of an electronic camera by adding gain is little different. When you raise the gain the picture does get brighter but the increase in noise means that the darkest things that can be seen by the camera remain hidden in the noise which has also increased in amplitude.

Another issue with adding gain to make the image brighter is that you will also normally reduce the dynamic range that you can record.

Screenshot-2019-11-27-at-18.21.19-1024x576 What is Dual Base ISO and why is it important?

This is because amplification makes the entire signal bigger. So bright highlights that may be recordable within the recording range of the camera at 0dB or the native ISO may be exceed the upper range of the recording format when even only a small amount of gain is added, limiting the high end.

Screenshot-2019-11-27-at-18.22.59-1024x576 What is Dual Base ISO and why is it important?
Adding gain amplifies the brighter parts of the image so they can now exceed the cameras recording range.

 

At the same time the increased noise floor masks any additional shadow information so there is little if any increase in the shadow range.

Reducing the gain doesn’t really help either as now the brightest parts of the image from the sensor are not amplified sufficiently to reach the cameras full output. Very often the recordings from a camera with -3dB or -6dB  of gain will never reach 100%.

Screenshot-2019-11-27-at-18.23.08-1024x576 What is Dual Base ISO and why is it important?
Negative gain may also reduce the cameras dynamic range.



A camera with dual base ISO’s works differently.

Instead of adding gain to increase the sensitivity of the camera a camera with a dual base ISO sensor will operate the sensor in two different sensitivity modes. This will allow you to shoot at the low sensitivity mode when you have plenty of light, avoiding the need to add lots of ND filters when you want to obtain a shallow depth of field. Then when you are short of light you can switch the camera to it’s high sensitivity mode.

When done correctly, a dual ISO camera will have the same dynamic range and colour performance in both the high and low ISO modes and only a very small difference in noise between the two.

How dual sensitivity with no loss of dynamic range is achieved is often kept very secret by the camera and sensor manufacturers. Getting good, reliable and solid information is hard. Various patents describe different methods. Based on my own research this is a simplified description of how I believe Sony achieve two completely different sensitivity ranges on both the Venice and FX9 cameras.

The image below represents a single microscopic pixel from a CMOS video sensor. There will be millions of these on a modern sensor. Light from the camera lens passes first through a micro lens and colour filter at the top of the pixel structure. From there the light hits a part of the pixel called a photodiode. The photodiode converts the photons of light into electrons of electricity. 

Screenshot-2019-11-27-at-17.40.52-1024x605 What is Dual Base ISO and why is it important?
Layout of a sensor pixel including the image well.

In order to measure the pixel output we have to store the electrons for the duration of the shutter period. The part of the pixel used to store the electrons is called the “image well” (in an electrical circuit diagram the image well would be represented as a capacitor and is often simply the capacitance of the the photodiode itself).

Screenshot-2019-11-27-at-17.41.00-1024x605 What is Dual Base ISO and why is it important?
The pixels image well starts to fill up and the signal output level increases.

Then as more and more light hits the pixel, the photodiode produces more electrons. These pass into the image well and the signal increases. Once we reach the end of the shutter opening period the signal in the image well is read out, empty representing black and full representing very bright.

Screenshot-2019-11-27-at-17.41.09-1024x605 What is Dual Base ISO and why is it important?

Consider what would happen if the image well, instead of being a single charge storage area was actually two charge storage areas and there is a way to select whether we use the combined image well storage areas or just one part of the image well.

Screenshot-2019-11-27-at-18.10.02-1024x575 What is Dual Base ISO and why is it important?
Dual ISO pixel where the size of the image well can be altered.

When both areas are connected to the pixel the combined capacity is large. So it will take more electrons to fill it up, so more light is needed to produce the increased amount of electrons. This is the low sensitivity mode. 

If part of the charge storage area is disconnected and all of the photodiodes output is directed into the remaining, now smaller storage area then it will fill up faster, producing a bigger signal more quickly. This is the high sensitivity mode.

What about noise?

In the low sensitivity mode with the bigger storage area any unwanted noise generated by the photodiode will be more diluted by the greater volume of electrons, so noise will be low. When the size of the storage area or image well is reduced the noise from the photodiode will be less diluted so the noise will be a little bit higher. But overall the noise will be much less that that which would be seen if a large amount of extra gain was added.

Note for the more technical amongst you: Strictly speaking the image well starts full. Electrons have a negative charge so as more electrons are added the signal in the image well is reduced until maximum brightness output is achieved when the image well is empty!!

As well as what I have illustrated above there may be other things going on such as changes to the amplifiers that boost the pixels output before it is passed to the converters that convert the pixel output from an analog signal to a digital one. But hopefully this will help explain why dual base ISO is very different to the conventional gain changes used to give electronic cameras a wide range of different ISO rating.

On the Sony Venice and the PXW-FX9 there is only a very small difference between the noise levels when you switch from the low base ISO to the high one. This means that you can pick and choose between either base sensitivity level depending on the type of scene you are shooting without having to worry about the image becoming unusable due to noise.

NOTE: This article is my own work and was prepared without any input from Sony. I believe that the dual ISO process illustrated above is at the core of how Sony achieve two different base sensitivities on the Venice and FX9 cameras. However I can not categorically guarantee this to be correct.

The “E” in “E-Mount” stands for Eighteen.

A completely useless bit of trivia for you is that the “E” in E-mount stands for eighteen. 18mm is the E-mount flange back distance. That’s the distance between the sensor and the face of the lens mount. The fact the e-mount is only 18mm while most other DSLR systems have a flange back distance of around 40mm means thare are 20mm or more in hand that can be used for adapters to go between the camera body and 3rd party lenses with different mounts.

Here’s a little table of some common flange back distances:

MOUNT FLANGE BACK SPARE/Difference
e-mount 18mm
Sony FZ (F3/F5/F55) 19mm 1mm
Canon EF 44mm 26mm
Nikon F Mount 46.5mm 28.5mm
PL 52mm 34mm
Arri LPL 44mm 26mm
Sony A, Minolta 44.5mm 26.5mm
M42 45.46mm 27.46mm