A while back I got the opportunity to shoot a circus with the Sony FR7. The circus is a traditional travelling circus based in the South West of the UK called “Funtasia”. They put on both family shows and adult shows (Cirque du Vulgar) touring during the summer months as well as a Christmas show.
Filming a traditional circus during a live show is difficult as there is no raised stage as you would find in a theatre. So it is very difficult to use a camera on a tripod without obstructing the audiences view unless you shoot from the back and this isn’t ideal either. The FR7 however allows you to place the camera on the floor, on a stand or to hang it from the the venues structure and then operate it remotely. It is also very small, so won’t obstruct someones view in the same way that a large camera would.
It can be controlled from a laptop or tablet or with Sony’s RM-IP500 controller (many other PTZ camera controllers can also control it). It can be connected to wirelessly but this adds some latency to the monitoring images that are sent from the camera over the network and for something fast moving like circus this isn’t helpful. So, for this I ran a single ethernet cable from the camera to a basic router and then connected my laptop to the router. I did also have the Sony RM-IP500 remote control panel, but it was easier just to do everything via my laptop.
I filmed 4 shows. Two from low down at the front of the performance area and 2 with the FR7 hanging from one of the support trusses of the big top tent. The high shots would not have been possible any other way and they give a unique perspective, especially of some of the aerial acts.
The FR7 is part of Sony’s Cinema Line and is basically a Sony FX6 digital cinema camera in a Pan, Tilt and Zoom housing. It has the same very high image quality as the FX6 as well as all the same recording codecs (plus some extra streaming codecs). And just like the FX6 it can record 4K at up to 120fps. For this shoot I used the Sony 28-135mm power zoom lens with a little bit of Clear Image zoom every now and again to further extend the zoom range.
In a few days I will be heading off to the north of Norway for my annual trip to shoot the Northern Lights. This year I really do hope to stream the Aurora live.
I’ve tried to livestream the Aurora before, but not really been successful. We go to a very remote location to get away from city lights and light pollution. But that means the cellphone connection isn’t great. And then I have had issues with getting the streaming hardware to work correctly in the extreme cold, it’s often well below -20c. I really want to stream the output of my FX3 rather than shooting the back of the camera with a phone as I have done before. Hopefully I will actually succeed this time. There have been some major updates to the software on my Xperia Pro phone and now the HDMI input app includes rtmp streaming direct from the app, so now I can stream from the FX3 via HDMI and the Xperia Pro more easily than before.
The next big unknown is when will the Aurora be visible. To see the Aurora I need clear skies and then the Aurora has to actually be present. There is no guarantee that it will be visible and I certainly can’t predict exactly when. So – I can’t tell you when I will be live. Most likely it will be sometime between January 12th and January 22nd, after 16:00 GMT and before 02:00 GMT. I may be live many times on different nights.
I will also be on facebook and this would be a good way to keep updated as I will try to post on facebook prior to going live on YouTube.
As well as the FX3 I’m taking an FX30 and it will be interesting to see how this performs trying to shoot the Aurora. Main lenses for the Aurora will be the Sony 24mm f1.4 GM, 20mm f1.8 G but I will also have a Sigma 20mm f1.4 with metabones speedbooster for the FX30.
Your going on an overseas shoot and trying to decide whether to check in your camera or take it as carry-on on the flight. What should you do, which is best?
24.8 million checked bags went missing in 2018, so it’s not a small problem.
Europe is the worst with 7.29 bags per 1,000 passengers annually, then it’s 2.85 in North America and only 1.77 in Asia.
So if you’re in Europe and travelling with say 3 bags – camera, tripod, lights. Then statistically your going to lose a bag around around once every 45 flights (22.5 return journeys). The statistics actually fit well with my own experience of a checked in bag going missing about once every 2 years. Most of the time they do turn up eventually, but if you need the gear for a shoot this can often be too late, especially if the location is remote or a long way from an airport.
Some years back I had a huge flightcase with a complete edit system in it disappear on a flight. It didn’t show up again until a couple of years later, found by the airline quite literally on the wrong side of the planet. How you lose something that size for years is beyond me. But stuff does go missing. This case eventually found it’s way back because my name and address was inside it. And that’s an important point. Make sure your contact details are on your luggage and IN your luggage. On the outside I only put my mobile phone number as there are criminal gangs that will look for addresses on luggage knowing that there’s a higher than normal chance that your home or business property may be unattended while you are out of the country.
Another thing to think about is how tags get attached to your luggage. If the bag is a hold-all type bag with two straps, often the check-in agent will put the baggage tag around both carry handles. If a baggage handler then picks the bag up by a single handle this can cause the tag to come off. Also baggage tags also have little additional bar code on the very end of the tag. These are supposed to be stuck onto the luggage so that if the tag comes off the luggage it can still be scanned and tracked. But often the check-in agents don’t bother sticking them on to your luggage.
If you have ever worked airside at an airport, as you move around you’ll often see small piles of luggage stacked in corners from where it’s fallen off luggage belts or worse still are the bags on the outside of bends on the airport service roads, often in the rain or snow, that have fallen from luggage bins or luggage trucks. Many airports employ people just to drive around to pickup up this stuff , throw it into a truck and then dump in a central area for sorting. Most will eventually find their owners but many won’t which is why they are now many specialist auction houses that sell off lost luggage on behalf of the airlines and airports.
Also what happens if you get caught up in an IT failure or baggage handlers industrial action? You valuable kit could end up in limbo for weeks.
So, I recommend where you can you take your camera as carry-on. Also do remember any lithium batteries MUST be taken as carry on. Tripod, lights etc, that can go in the hold. If they go missing it is a complete pain, but you can probably still shoot if you have the camera a lens and couple of batteries.
Here’s a compilation of footage from this years winter trip to Norway. This was all shot with the PXW-FX9. Mostly with sony lenses and autofocus. The AF was great for following the dog sledding. The camera performed really well and did a great job of capturing what was a very faint Aurora display in between cloud banks.
The daytime footage was shot using S-Log3 in CineEI. I didn’t expose any brighter than base, so used 800EI or 4000EI. I used the viewfinder display gamma assist rather than any LUT’s as I know I can use gamma assist no matter what frame rate I shoot.
The Aurora was very faint, barely visible to the naked eye, so I had to shoot using a 32 frame slow shutter (the equivalent of about 1.3 seconds at 24fps). I then used interval record with a 2 second interval to create the timelapse Aurora sequences. As there were no dynamic range concerns I chose to shoot using the default S-Cinetone settings in custom mode so I could see exactly what I was getting. I was amazed at how many stars the camera picked up with such a short exposure, a sure sign of how sensitive the camera is. For the Aurora I used a Sigma 20mm f1.4 lens with Metabones speed booster and 4K s35 scan. I felt that the extra stop of light gained from the use of the speedbooster was better than the slightly lower noise that would have been present if I had used the 6K FF scan. I did also try S&Q at 1 frame per second with the shutter off to see how this compared to the slow shutter. The S&Q was much noisier, the cameras built in NR seems to work particularly well with the slow shutter function, so if you need a long exposure on the FX9 I recommend slow shutter and interval record over S&Q at 1 frame per second.
For the sunset shots I made use of the variable ND filter, set to auto to control the exposure. I used the cameras “backlight” auto exposure setting to obtain a bright exposure despite the strong sunlight. These shots were shot using S-Log3 in CineEI and it’s nice that the auto exposure functions work very well in this mode. The main lens used was a Sony 24-240mm f3.5-f6.3 zoom. Not the very greatest of lenses, but for such a zoom range the image quality is pretty decent. I used this lens because the temperature was often below -15c dipping to -34c at times. In addition there was a lot of blowing snow. I don’t like doing a lot of lens swapping in these conditions and the 24-240mm allowed me to take just one lens on most of the trips out and about on the snow scooters or dog sleds.
Another big help was the Core SWX V-Mount adapter. I used both the Core Neo 98Wh V-Mount batteries and some of my Pag Paglink 150Wh V-Mounts. They all worked very well in the harsh conditions and a great feature of the Core Neo’s is the run time indicator that gives an accurate time remaining readout based on the batteries capacity and the cameras power draw. This is very handy when using a V-Mount adapter as all the adapters currently on the market convert the battery voltage up to 19.5 volts to feed the FX9. As a result you don’t get any form of capacity or run time indication in the viewfinder. The Core V-Mount adapter also incorporates an LED indicator that turns red as the battery voltage gets low and then flashes red when it’s about to run out – a very nice touch. I did use a loose fitting insulated cover that I made myself. It’s not heated but does have a fleece lining so helps keep the heat generated by the camera when it’s operating in the camera. Where this really helps is to keep the lens warmer than the ambient air and this helps stop the lens from frosting over when shooting the aurora at night (see the picture at the top of the article where you can see just how frosty things can get at night).
As usual on these trips we had one guest break a tripod. A lot of materials that are normally solid and robust become very brittle at temperatures below -15c. I was using a Miller CX18 tripod head with Miller Solo legs and once again this proved to be a great combination. The fluid damping of the head remain almost completely constant all the way down to -34c. A lot of other heads become unusable at these sorts of temperatures.
For file backup and file management I use the Nexto DI NPS-10. This is a relatively new device from Nexto DI. Designed to offer a robust backup solution at a much lower price than similar previous Nexto DI products it too worked very well even in these harsh conditions. I have a 1TB SSD in mine and I can backup a 128GB XQD card in around 5 minutes. I can’t recommend the Nexto DI products enough for those that need to have a simple, reliable backup on location.
The workshop shots are part of a sequence of shots for another video I am working on. For these I used Sony 85mm f1.8 FE and 24mm f2 FE lenses. The sequence is mostly available light but I did have a Light & Motion Stella 5K on hand to add a little extra light here and there.
Post production was done using DaVinci Resolve and ACES.
There are already a few setup and staged video samples from the new Sony PXW-FX9 circulating on the web. These are great. But how will it perform and what will the pictures look like for an unscripted, unprepared shoot? How well will the autofocus work out in the street, by day and by night? How does the S-Cinetone gamma and colour in custom mode compare with S-Log3 and the s709 Venice LUT compare?
To answer these questions I took a pre-production FX9 into the nearby town of Windsor with a couple of cheap Sony E-Mount lenses. The lenses were the Sony 50mm f1.8 which costs around $350 USD and the 28-70mm f3.5-f5.6 zoom that costs about $400 USD and is often bundled as a kit lens with some of the A7 series cameras.
To find out how good the auto focus really is I decided to shoot entirely using auto focus with the AF set to face priority. The only shot in the video where AF was not used is the 120fps slow-mo shot of the swans at 0:53 as AF does not work at 120fps.
Within the video there are examples of both S-Cinetone and S-Log3 plus the s709 LUT. So you know which is which I have indicated this is the video. I needed to do this as the two cut together really well. There is no grading as such. The S-Cinetone content is exactly as it came from the camera. The CineEI S-Log3 material was shot at the indicated base ISO and EI, there was no exposure offset. In post production all I did was add the s709 LUT, that’s it, no other corrections.
The video was shot using the Full Frame 6K scan, recording to UHD XAVC-I.
For exposure I used the cameras built in waveform display. When in CineEI I also used the Viewfinder Gamma Display assist function. Viewfinder Gamma assist gives the viewfinder the same look as the 709(800) LUT. What’s great about this is that it works in all modes and at all frame rates. So even when I switched to 2K Full Frame scan and 120fps the look of the image in the viewfinder remained the same and this allowed me to get a great exposure match for the slow motion footage to the normal speed footage.
AUTOFOCUS.
There are some great examples of the way the autofocus works throughout the video. In particular the shot at 0:18 where the face priority mode follows the first two girls that are walking towards the camera, then as they exit the frame switches to the two ladies following behind without any hunting. I could not have done that any better myself. Another great example is at 1:11 where the focus tracks the couple walking towards the camera and once they exit the shot the focus smoothly transitions to the background. One of the nice things about the AF system is you can adjust the speed at which the camera re-focusses and in this case I had slowed it down a bit to give it a more “human” feel.
Even in low light the AF works superbly well. At 1:33 I started on the glass of the ornate arch above the railway station and panned down as two people are walking towards me. The camera took this completely in it’s stride doing a lovely job of shifting the focus from the arch to the two men. Again, I really don’t think I could have done this any better myself.
NOISE.
Also, I am still really impressed by how little noise there is from this camera. Even in the high ISO mode the camera remains clean and the images look great. The low noise levels help the camera to resolve colour and details right down into the deepest shadows. Observe how at 2:06 you can clearly see the different hues of the red roses against the red leather of the car door, even though this is a very dark shot.
The reduction in noise and increase in real sensitivity also helps the super slow motion. Compared to an FS7 I think the 120fps footage from the FX9 looks much better. It seems to be less coarse and less grainy. There is still some aliasing which is unavoidable if you scan the sensor at a lower resolution, but it all looks much better controlled than similar material from an FS7.
DYNAMIC RANGE.
And when there is more light the camera handles this very well too. At 1:07 you can see how well S-Cinetone deals with a very high contrast scene. There are lots of details in the shadows and even though the highlights on the boats are clipped, the way the camera reaches the end of it’s range is very nice and it doesn’t look nasty, it just looks very bright, which it was.
For me the big take-away from this simple shoot was just how easy it is to get good looking images. There was no grading, no messing around trying to get nice skintones. The focus is precise and it doesn’t hunt. The low noise and high sensitivity means you can get good looking shots in most situations. I’m really looking forward to getting my own FX9 as it’s going to make life just that little bit easier for many of my more adventurous shoots.
Tonight the BBC are running a series of programmes about legendary 80’s pop band Duran Duran. At the same time Sky television in the UK have made one of my the projects I am most proud to have been involved in available for free, in HD, and on demand – A Diamond In The Mind. In 2011 I was involved in the planning and filming of this Duran Duran concert. Originally conceived a s a lowish cost production to be shot in at a small venue in Berlin, the shoot was full of challenges, not least of which was the cancellation of the Berlin concert just hours before it’s start when the lead singer Simon LeBon suffered damaged vocal chords.
We were right in the middle of building up the cameras at the Berlin concert hall when the news came through.
With the cancellation of the Berlin gig the whole scope of the project changed as the next opportunity to shoot would be at one of the huge arena events in the UK. In 1984 Duran Duran produced a film called “Arena”. This was a truly epic concert video that covered several legs of their sold out arena and stadium tour of 1983. While we were never going to replicate this on our much more modest budget, it certainly gave us something to aim for.
The idea was to film the concert with what was at the time ground breaking large sensor video cameras to achieve a film like look. Duran Duran are famous for their videos so we were following in some pretty big footsteps. The majority of the cameras were Sony PMW-F3’s with a custom picture profile that I developed specifically for the shoot. Other cameras included (if I remember right) a couple of FS100’s, some GoPro’s on stage and right at the very back of the Venue there was a Red One shooting a big 4K wide shot.
I got the opportunity to test the camera settings the week before the shoot at a concert at the O2 arena. After that there was just a single concert to film, so we had to get everything just right.
The day of the gig was a typical dark and gloomy winters day in Manchester. Inside the vast Manchester arena we were busy fitting lenses to camera. Sorting out cue sheets, organising talkback links and all those other things needed for a multi camera concert shoot.
We had some very exotic lenses, several Angenieux 24-290 T2.8’s. At my camera position I was using a 40x ENG lens with one of the 2/3″ to super35mm adapters I had designed. The focal length of this lens was the equivalent of 1000mm at f4. The depth of field was paper thin!
The concert started and the filming went ahead. It seem to all be over very quickly, all that preparation, all those tests for just 2 hours of filming. And then the shoot was over.
Post production took quite a while as band member Nick Rhodes chose to add a lot of his own elements to the edit. Each track in the film has a slightly different look, but it was all worth it. The end result was the feature length film “A Diamond In The Mind”. It’s a project that was amazing to work on, with an amazing crew put together by Hangman Films. Today, 7 years later I still think it looks pretty damn good. I’d love to go back to the rushes and produce an HDR version!
This is another of those frequent questions at workshops and online.
What frame rate is the best one to use?
First – there is no one “best” frame rate. It really depends on how you want your video to look. Do you want the slightly juddery motion of a feature film or do you want silky smooth motion?
You also need to think about and understand how your video will be viewed. Is it going to be watched on a modern TV set or will it be watched on a computer? Will it only be watched in one country or region or will it be viewed globally?
Here are some things to consider:
TV in Europe is normally 50Hz, either 25p or 50i.
TV in the North America is 60Hz, either 30p or 60i (both actually 29.97fps).
The majority of computer screens run at 60Hz.
Interlaced footage looks bad on most LCD screens.
Low frame rates like 24p and 25p often exhibit judder.
Most newer, mid price and above TV’s use motion estimation techniques to eliminate judder in low frame rate footage.
If you upload 23.98fps footage to YouTube and it is then viewed on a computer it will most likely be shown at 24p as you can’t show 0.98 of a frame on a 60Hz computer screen.
Lets look first at 25p, 50i and 50p.
If you live in Europe or another 50Hz/Pal area these are going to be frame rates you will be familiar with. But are they the only frame rates you should use? If you are doing a broadcast TV production then there is a high chance that you will need to use one of these standards (please consult whoever you are shooting for). But if your audience is going to watch your content online on a computer screen, tablet or mobile phone these are not good frame rates to use.
Most computer screens run at 60Hz and very often this rate can’t be changed. 25p shown on most computer screens requires 15 frames to be shown twice and 10 frames to be shown 3 times to create a total of 60 frames every second. This creates an uneven cadence and it’s not something you can control as the actual structure of the cadence depends on the video subsystem of the computer the end user is using.
The odd 25p cadence is most noticeable on smooth pans and tilts where the pan speed will appear to jump slightly as the cadence flips between the 10 frame x3 and 15 frame x 2 segments. This often makes what would otherwise be smooth motion appear to stutter unevenly. 24p material doesn’t exhibit this same uneven stutter (see the 24p section). 50p material will exhibit a similar stutter as again the number of padding frames needed is uneven, although the motion should be a bit more fluid.
So really 25p and 50p are best reserved for material that will only ever be seen on televisions that are running at 50Hz. They are not the best choices for online distribution or viewing on computers etc.
24p, 30p or 60p (23.98p, 29.97p)
If you are doing a broadcast TV show in an NTSC/60Hz area then you will most likely need to use the slightly odd frame rates of 23.98fps or 29.97fps. These are legacy frame rates specifically for broadcast TV. The odd frame rates came about to avoid problems with the color signal interfering with the luma (brightness) signal in the early days of analog color TV.
If you show 23.98fps or 29.97fps footage on a computer it will normally be shown at the equivalent of 24p or 30p to fit with the 60Hz refresh rate of the computer screen. In most cases no one will ever notice any difference.
24p Cadence.
23.98p and 24p when shown on a 60Hz screen are shown by using 2:3 cadence where the first frame is shown twice, the next 3 times, then 2, then 3 and so on. This is very similar to the way any other movie or feature film is shown on TV and it doesn’t look too bad.
30p or 29.97p footage will look smoother than 24p as all you need to do is show each frame twice to get to 60Hz there is no odd cadence and the slightly higher frame rate will exhibit a little less judder. 60p will be very smooth and is a really good choice for sports or other fast action. But, higher frame rates do require higher data rates to maintain the same image quality. This means larger files and possibly slower downloads and must be considered. 30p is a reasonable middle ground choice for a lot of productions, not as juddery as 24p but not as smooth as 60p.
24p or 23.98p for “The Film Look”.
Generally if you want to mimic the look of a feature film then you might choose to use 23.98p or 24p as films are normally shot at 24fps. If your video is only going to be viewed online then 24p is a good choice. If your footage might get shown on TV the 23.98p may be the better choice as 23.98fps works well on 29.97fps TV’s in 60Hz/NTSC areas.
BUT THERE IS A NEW CATCH!!!
A lot of modern, new TV’s feature motion compensation processes designed to eliminate judder. You might see things in the TV’s literature such as “100 Hz smooth motion” or similar. If this function is enabled in the TV it will take any low frame rate footage such as 24p or 25p and use software to create new frames to increase the frame rate and smooth out any motion judder.
So if you want the motion judder typical of a 24fps movie and you create at 24fps video, you may find that the viewer never sees this juddery, film like motion as the TV will do it’s best to smooth it out! Meanwhile someone watching the same clip on a computer will see the judder. So the motion in the same clip will look quite different depending on how it’s viewed.
Most TV’s that have this feature will disable it it when the footage is 60p as 60p footage should look smooth anyway. So a trick you might want to consider is to shoot at 24p or 30p and then for the export file create a 60p file as this will typically cause the TV to turn off the motion estimation.
In summary, if you are doing a broadcast TV project you should use the frame rate specified by the broadcaster. But for projects that will be distributed via the internet I recommend the use of 23.98p or 24p for film style projects and 30p for most other projects. However if you want very smooth motion you should consider using 60p.
Before diving into ISO, I think it’s first important to understand what exposure is. Exposure is the amount of light you put on to a sensor or film stock. Exposure is NOT brightness, brightness is – brightness. I can take an image in to post production and make it brighter or darker, but this doesn’t change how the image was exposed. Exposure is very specifically – how much light is allowed to hit the sensor or film stock and this is usually controlled by the shutter speed, aperture as well as perhaps ND filters.
What is ISO?
Once upon a time the meaning of ISO was quite clear. It was a standardised sensitivity rating for the film stock you were using. If you wanted more sensitivity, you used film with a higher ISO rating. But today the meaning of ISO is less clear. And lets not forget, we can’t swap our sensors out for more or less sensitive ones. So what does ISO mean given that we can’t actually change the sensor?
ISO is short for International Standards Organisation. And they specify many, many different standards for many different things. For example ISO 3166 is for telephone country codes, ISO 50001 is for energy management.
But in our world of film and TV there are two main ISO standards that we have blended into one and we just call it “ISO”.
ISO 5800:2001 is the system used to determine the sensitivity of color negative film found by plotting the density of the film against exposure to light.
ISO 12232:2006 specifies the method for assigning and reporting ISO speed ratings, ISO speed latitude ratings, standard output sensitivity values, and recommended exposure index values, for electronic cameras.
Note a key difference:
ISO 5800 is the measurement of the actual sensitivity to light of film.
ISO 12232 is a standardised way to report the speed rating, ie: it is not actually a direct sensitivity measurement.
So, from the above we can deduce that with film ISO is an actual sensitivity measurement. With an electronic camera it is a speed rating, not a measurement of the sensitivity, a rating.
Different Approaches and REI.
Within the digital camera ISO rating system there are 5 different standards that a camera manufacturer can use when obtaining the ISO rating of a camera. The most commonly used method is the Recommended Exposure Index (REI) method, which allows the manufacturer to specify a camera model’s base ISO arbitrarily, based on what the manufacturer believes produces a satisfactory image. So it’s not actually a measure of the cameras sensitivity, but a rating that if entered into a standard external light meter and the shutter and aperture values from the light meter used to set the exposure will result in satisfactory looking image.
This is very different to a sensitivity measurement and variations in opinion as to what is “a satisfactory image” will vary from person to person, manufacturer to manufacturer. For example – how much noise is considered acceptable? I know a lot of people with very different opinions on this! So, there is a lot of scope for movement as to how an electronic camera might be rated and we see this in the real world where two cameras both rated at the same ISO may have very different noise levels when exposed “correctly”.
You Can’t Change the Silicon!
As you cannot change the sensor in a digital camera, you cannot change the cameras efficiency at converting light into electrons which is largely determined by the materials used and the physical construction of the sensor. So, you cannot change the actual sensitivity of the camera to light. But we have all seen how the ISO number of most digital cameras can normally be increased (and sometimes lowered) from the base ISO number.
Higher and Lower ISO values.
Raising and lowering the ISO rating in an electronic camera is normally done by adjusting the amplification of the signal coming from the sensor, typically referred to as “gain” in the camera. It’s not actually a physical change in the cameras sensitivity to light. It is more like turning up the volume on an analog radio to make the music louder. Dual ISO cameras that claim not to add gain when switching between ISO’s typically do this by an adjustment at the sensors pixel level and this is closer to an actual sensitivity change. But generally this only gives two levels, not the multitude of ISO values offed by most cameras. While it is true that Dual ISO is different to a gain shift, it does typically alter the noise levels with the higher base ISO being slightly more noisy than the lower. With a true dual ISO sensor does do is produce the same dynamic range at both ISO’s.
Noise and Signal To Noise Ratio.
Most of the noise in the pictures we shoot comes from the sensor and sensor readout circuits and this noise level coming from the sensor is largely unchanged no matter what you do.
So, the biggest influence on the signal to noise ratio or SNR is the amount of light you put on the sensor because more light = more signal. The noise remains but with more light the signal is bigger so you get a better signal to noise ratio, up to the point where the sensor clips at which point adding more light makes no further difference.
But what about low light?
To obtain a brighter image when there the light levels are low and the picture coming from the sensor looks dark the signal coming from the sensor can be boosted or amplified (gain is added) by increasing the cameras ISO value. This extra signal amplification makes both the desirable signal bigger but at the same time as the noise cannot be separated form the image the noise also gets bigger by the same amount. If we make the desirable picture 2 times brighter we also make the noise 2 x bigger/brighter. As a result the picture will be brighter but the noise will appear greater than an exposure where we had enough light to get the brightness we want and didn’t need to add gain or raise the ISO.
More gain = less dynamic range.
The signal to noise ratio deteriorates because the added amplification means the recording will clip more readily. Something that was right at the recordings clip point without adding gain may will end up above the clip point by adding gain. As a result the highlight range you can record reduces while at the same time the noise gets bigger. But the optimum exposure is now achieved with less light so the equivalent ISO number is increased. If you were using a light meter you would increase the ISO setting on the light meter to get the correct exposure.
But the camera isn’t getting more sensitive, it’s just that the optimum amount of light for the “best” or “correct” exposure is reduced due to the added amplification.
So, with an electronic camera, ISO is a rating that will give you the correct recording brightness for the amount of light and the amount of gain that you have. This is different to sensitivity. Obviously the two are related, but they are not quite the same thing.
ISO in an electronic camera is not a sensitivity value, it is an exposure rating.
Getting rid of noise:
To combat the inevitable increase in the visibility of noise and the degraded signal to noise ratio that comes from adding gain/amplification, most modern cameras use electronic noise reduction which is applied more and more aggressively as you increase the gain. At low levels this goes largely un-noticed. But as you start to add more gain there will often be more noise reduction and this will start to degrade the image. It may become softer, it may become smeary. You may start to see banding, ghosting or other artefacts. Higher noise levels are also problematic for modern high compression codecs, so even if the camera doesn’t add extra noise reduction at high gain levels it is likely that the codec will do more noise reduction in an attempt to keep the recording bit rate under control.
Often as you increase the gain you may only see a very small increase in noise as the noise reduction does a very good job of hiding the noise. But for every bit of noise thats reduced there will be another artefact replacing it.
Technically the signal to noise ratio can be improved by the use of noise reduction, but this typically comes at a price and NR can be very problematic if you later want to grade or adjust the footage as often you won’t see the artefacts until after the corrections or adjustments have been made. So be very careful when adding gain. It’s never good to have extra gain.
So what does all of this mean?
The majority of the video cameras we use today are something known as ISO invariant. This mean that the actual sensitivity of the camera doesn’t actually change, even though the camera may offer you a wide range of ISO values. Instead we are adding gain to get a brighter picture, but extra gain degrades the signal to noise ratio and limits the dynamic range.
As well as adding gain in camera we can also add gain in post production. And if the quality of the recording codec is high enough there is almost no difference between adding the gain in post production compared to adding the gain in camera. If you don’t add gain in the camera then you don’t reduce the cameras dynamic range. By moving the gain addition to post production you can retain the cameras full dynamic range and overall the end result won’t be significantly different. This is why most Log cameras use some sort of Exposure Index system that locks the camera to it’s base sensitivity as this is where the camera will exhibit the greatest useable dynamic range.
What about using Picture Profiles of different Gamma Curves?
Different gamma curves have different gain levels. So, very often you will see a camera at it’s base sensitivity (ie: no added gain) give you different ISO values depending on the gamma curve you have chosen. Again – this doesn’t meant the sensitivity of the camera is different for each gamma curve. What it actually means is that the optimum exposure (exposure = amount of light you put on the sensor) is a bit different for each gamma curve. For example when shooting S-Log3 the sensor is exposed lower than it is with normal gammas. This darker S-Log3 exposure leaves more room for an extended highlight range. The flip side to this is that when the camera is set at the correct, no extra gain added base ISO’s “correctly” exposed S-Log3 will be noisier than correctly exposed Rec-709 or S-Cinetone, but the S-Log3 will have a greater highlight range. If you were to expose the S-Log3 and the S-Cinetone using the same aperture and shutter speed the noise would be the same.
Picture Profiles for Low Light.
A question that gets asked a lot is: What’s the best picture profile or gamma for low light?
Well, if you have followed all of the above then you will hopefully understand that the gamma or picture profile makes no difference to the actual sensitivity of the camera. So in reality there is very little difference between any profile or gamma curve in terms of how the camera will perform in low light. Remember: it’s always the same sensor with the same noise and same sensitivity to light no matter what other settings you have chosen.
There might be some differences in the amount of noise reduction applied in different profiles and that might make a small difference. Many of Sony cameras allow you to adjust this between off/low/mid/high. But even if you can’t change this in camera, adding a bit of extra NR in post is a common practice these days. Really, it’s a case of choosing the profile or gamma that gives you the image you want, S-Log3 if you intend to grade, perhaps S-Cinetone if you don’t. If you bring the S-Cinetone ISO value up to match the S-Log3 ISO value, the noise in the final image from both will be more or less the same.
Using what data you have.
Perhaps the only small consideration is that under exposed S-Log3 only uses a very small part of the cameras full recording range. You won’t be making use of the full recording data range. Because of this it might be hard to grade it without the image starting to look coarse or grainy. Because of the smaller dynamic range, similarly exposed (same aperture, same shutter speed) S-Cinetone or Rec-709 will use more of the data range and might not look quite as coarse as a result. This difference is very small, but it should be considered if you are trying to squeeze something out of an extremely under exposed situation.
After a test run starting and finishing in Alta last year I have decided to run the trips from Alta again next year. The hotel is nicer and the itinerary more relaxed. Starting and finishing at Alta gives us more time at the cabins.
2017/2018 Northern Lights Expeditions to Norway, travelling by road and snow scooter, staying in mountain cabins. Including food for 4 days, ice fishing, snow scooter use and optional photo/video tuition. You must book your own flights to Alta, Norway.
2018 Tour 1: Arctic Dawn. On this tour we will see the very first sunrise of the year. The moon will be absent during the night, so best suited for shooting and viewing faint Aurora. Arrive Friday 12th January 2018, depart Thursday 18th January 2018. £1,350 per person. Max 8 people. (cost of flights NOT included). You must arrange your own transport to and from Alta, Norway.
2018 Tour 2: Moonrise Tour. On this tour we will have a rising moon (after new moon) The moon will start at 18% illumination and increase to 53% illumination over the course of the tour. This will provide interesting possibilities for moonlit landscapes, but if the Aurora is very, very faint it will be harder to see. The days will be longer during this tour than the first tour. Arrive Thursday 18th of January 2018, Depart Wednesday 24th of January 2018. £1350 per person max 8 guests.
These really are amazing adventures. Not just a chance to see the Northern Lights but also a chance to experience some of the most beautiful scenery on the planet. Full details can be found by clicking here.
I’ve been shooting with the Fujinon MK18-55mm lens on my PXW-FS7 and PXW-FS5 since the lens was launched. I absolutely love this lens, but one thing has frustrated me: I really wanted to be able to use it on my PMW-F5 to take advantage of the 16 bit raw. Finally my dreams have come true as both Duclos and MTF have started making alternate rear mounts for both the MK18-55mm and the MK50-135mm.
So, when Fujinon contacted me and asked if I would be interested in shooting a short film with these lenses on my F5 I jumped at the chance. The only catch was that this was just over a week ago and the video was wanted for IBC which means it needed to be ready yesterday. And of course it goes without saying that it has to look good – no pressure then!
First challenge – come up with something to shoot. Something that would show off the key features of these beautiful lenses – image quality, weight, macro etc. I toyed with hiring a model and travelling to the Irish or Welsh coast and filming along the cliffs and mountains. But it’s the summer holidays so there was a risk of not being able to get an isolated location all to ourselves, plus you never know what the weather is going to do. In addition there was no story, no beginning, middle or end and I really wanted to tell some kind of story rather than just a montage of pretty pictures.
So my next thought was to shoot an artist creating something. I spent a weekend googling various types of artistry until I settled on a blacksmith. The video was going to be shown in both SDR and HDR and fire always looks good in HDR. So after dozens of emails and telephone calls I found an amazing looking metalwork gallery and blacksmith that was willing for a reasonable fee to have me and another cameraman take over their workshop for a day (BIG thank you to Adam and Lucy at Fire and Iron check out their amazing works of art).
Normally I’d carry out a recce of a location before a shoot to take photos and figure out what kind of lights I would need as well as any other specialist or unusual equipment. But this time there simply wasn’t time. We would be shooting the same week and it was already a very busy week for me.
The next step before any shoot for me is some degree of planning. I like to have a concept for the video, at the very least some outline of the shots I need to tell the story, perhaps not a full storyboard, but at least some kind of structure. Once you have figured out the shots that you want to get you can then start to think about what kind of equipment you need to get those shots. In this case, as we would be shooting static works of art I felt that having ways to move the camera would really enhance the video. I have a small Jib as well as some track and a basic dolly that is substantial enough to take the weight of a fully configured PMW-F5 so these would be used for the shoot (I’m also now looking for a slider suitable for the F5/F55 that won’t break the bank, so let me know if you have any recommendations).
So the first items on my kit list after the camera and lenses (the lenses were fitted with Duclos FZ rear mounts) was the jib and dolly. To achieve a nice shallow depth of field I planned to shoot as close to the lenses largest aperture of T2.9 as possible. This presents 2 challenges. The F5’s internal ND filters go in 3 stop steps – that’s a big step and I don’t want to end up at T5.6 when really I want T2.9, so 1 stop and 2 stop ND filters and my gucchi wood finished Vocas matte box would be needed (the wood look does nothing to help the image quality, but it looks cool). Oh for the FS7 II’s variable ND filter in my F5!
The second problem of shooting everything at T2.9 with a super 35mm sensor is that focus would be critical and I was planning on swinging the camera on a jib. So I splashed out on a new remote follow focus from PDMovie as they are currently on offer in the UK. This is something I’ve been meaning to get for a while. As well as the remote follow focus I added my Alphatron ProPull follow focus to the kit list. The Fujinon MK lenses have integrated 0.8 pitch gears so using a follow focus is easy. I now wish that I had actually purchased the more expensive PDMovie follow focus kit that has 2 motors as this would allow me to electronically zoom the lens as well as focus it. Oh well, another thing to add to my wish list for the future.
One other nice feature of the Fujinon MK’s is that because they are parfocal you can zoom in to focus and then zoom out for the wider shot and be 100% sure that there is no focus shift and that the image will be tack sharp. Something you can’t do with DSLR lenses.
Lighting: This was a daylight shoot. Now I have to say that I am still a big fan of old school tungsten lighting. You don’t get any odd color casts, it gives great skin tones, it’s cheap and the variety and types of lamp available is vast. But as we all know it needs a lot of power and gets hot. Plus if you want to mix tungsten with daylight you have to use correction gels which makes the lights even less efficient. So for this shoot I packed my Light and Motion Stella lamps.
The Stellas are daylight balanced LED lamps with nice wide 120 degree beams. You can then use various modifiers to change this. I find the 25 degree fresnel and the Stella 5000 a particularly useful combination. This is the equivalent to a 650W tungsten lamp but without the heat. The fresnel lens really helps when lighting via a diffuser or bounce as it controls the spill levels making it easier to control the overall contrast in the shot. The Stella lights have built in batteries or can be run from the mains. They are also waterproof, so even if it rained I would be able to have lights outside the workshop shining in through the windows if needed.
I always carry a number of pop-up diffusers and reflectors of various sizes along with stands and arms specifically designed to hold them. These are cheap but incredibly useful. I find I end up using at least one of these on almost every shoot that I do. As well as a couple of black flags I also carry black drapes to place on the floor or hang from stands to reduce reflections and in effect absorb unwanted light.
To check my images on set I use an Atomos Shogun Flame. Rather than mounting it on the camera, for this shoot I decided to pack an extra heavy duty lighting stand to support the Shogun. This would allow my assistant to use the flame to check focus while I was swinging the jib. The HDR screen on the Shogun allows me to see a close approximation of how my footage will look after grading. It also has peaking and a zoom function to help with focussing which was going to be essential when the camera was up high on the jib and being focussed remotely. I also included a TV-Logic LUM171G which is a 17″ grading quality monitor with 4K inputs. The larger screen is useful for focus and it’s colour accuracy helpful for checking exposure etc.
For audio I packed my trusty UWP-D wireless mic kit and a pair of headphones. I also had a shotgun mic and XLR cable to record some atmos.
As well as all the larger items of kit there’s also all the small bits and bobs that help a shoot go smoothly. A couple of rolls of gaffer tape, crocodile clips, sharpies, spare batteries, extension cables etc. One thing I’ve found very useful is an equipment cart. I have a modiffied rock-n-roller cart with carpet covered shelves. Not only does this help move all the kit around but it also acts as a desk on location. This is really handy when swapping lenses or prepping the camera. It can save quite a bit of time when you have a mobile work area and somewhere you can put lenses and other frequently used bits of kit.
The day before the shoot I set everything up and tested everything. I checked the backfocus adjustment of the lenses. Checked the camera was working as expected and that I had the LUT’s I wanted loaded into both the camera and the Gratical viewfinder. With the camera on the jib I made sure I had the right weights and that everything was smooth. I also checked that my light meter was still calibrated against the camera and that the lens apertures matched what I was expecting (which they did perfectly). Color temperature and colorimetry was checked on the TVLogic monitor.
It’s worth periodically checking these things as there would be nothing worse than rocking up for the shoot only to find the camera wasn’t performing as expected. If you rent a cinema camera package from a major rental house it would be normal to set the camera up on a test bench to check it over before taking it away. But it’s easy to get lazy if it’s your own kit and just assume it’s all OK. A full test like this before an important shoot is well worth doing and it gives you a chance to set everything up exactly as it will be on the shoot saving time and stress at the beginning of the shoot day.
On the morning of the shoot I loaded up the car. I drive a people carrier (minivan to my friends in the USA). Once you start including things like a jib, track and dolly, equipment cart, 6x tungsten lights, 4 x LED lights, plus camera, tripods (including a very heavy duty one for the jib) the car soon fills up. A conventional saloon would not be big enough! One word of caution. I was involved in a car crash many years ago when the car rolled over. I had camera kit in the back of the car and the heavy flight cases did a lot of damage crashing around inside the car. If you do carry heavy kit in the car make sure it’s loaded low down below the tops of the seats. You don’t want everything flying forwards and hitting you on the back of your head in a crash. Perhaps consider a robust steel grill to put between the cargo compartment and the passenger compartment.
On arrival at the location, while it’s very tempting to immediately start unloading and setting up, I like to take a bit of a break and have a tea or coffee first. I use this time to chat with the client or the rest of the crew to make sure everyone knows what’s planned for the day. Taking a few minutes to do this can save a lot of time later and it helps everyone to relax a little before what could be a busy and stressful day.
Now it’s time to unpack and setup. I find it’s better to unpack all the gear at this time rather than stopping and starting throughout the day to unpack new bits of kit. Going to the car, unlocking, unpacking, locking, back to the set etc wastes time. This is where the equipment cart can be a big help as you can load up the cart with all those bits and pieces you “might” need… and inevitably do need.
The blacksmiths workshop was a dark space about 6m x 5m with black walls, open on one side to the outside world. Blacksmiths forges (so I learnt) are dark so that the blacksmith can see the glow of the metal as it heats up to gauge it’s temperature. On the one hand this was great – huge amounts of relatively soft light coming from one direction. On the other hand the dark side was very dark which would really push the camera and lenses due to the extreme contrast this would create.
We set the jib up inside the workshop to shoot the various processes used by a blacksmith when working with iron and steel. Apparently there are only 7 different processes and anything a blacksmith does will use just these 7 processes or variations of them.
Most of the shots done on the jib would be shot using the Fujinon MK18-55mm, so that’s the lens we started with. For protection from flying sparks a clear glass filter was fitted to the lens. While the finished film would be a 24p film, most of the filming was 4K DCI at 60fps recording to 16 bit raw. This would give me the option to slow down footage to 24p in post if I wanted a bit of slow motion.
When we did need to do a lens swap it was really easy. The Vocas matte box I have is a swing-away matte box. So by releasing a lever on the bottom of the matte box it swings out of the way of the lens without having to remove it from the rods. Then I can remove the lens and swap it to the other lens. The MK50-135mm is the same size as the MK18-55mm. The pitch gears are also in the same place. So swapping lenses is super fast as the follow focus or any focus motors don’t need to be re-positioned and the matte box just swings back to exactly the same position on the lens. It’s things like this that really separate pro cinema lenses from DSLR and photography lenses.
For exposure I used the cameras built in LUT’s and the 709(800) LUT. I set the camera to 800EI. I used a grey card to establish a base exposure, exposing the grey card at 43% (measuring the 709 level). I used a Zacuto Gratical viewfinder which has a great built in waveform display, much better than the one in the camera. I also double checked my light levels with a light meter. I don’t feel that it’s essential to use a light meter but it’s a useful safety net. The light meter is also handy for measuring contrast ratios across faces etc but again if you have a decent waveform display you don’t have to have a light meter.
For the next 3 hours we shot the various processes seen in the video. Trying to get a variety of different shot. But when each process is quite similar, usually involving the anvil and a large hammer it was difficult to come up with shots that looked different.
In the afternoon we set up to shoot the interview sequence. The reason for doing this was to not only provide the narrative for the film but also to help show how the lenses reproduce skin tones. The Fujinon MK series lenses are what I would describe as “well rounded”. That is, not too sharp but not soft either. They produce beautifully crisp pictures without the pictures looking artificially sharp and this really helps when shooting people and faces. They just look really nice.
For the interview shot I used one of the Stella 5000 lights with the 25 degree fresnel lens aimed through a 1m wide diffuser to add a little extra light to supplement the daylight. This allowed me to get some nice contrast across the blacksmiths face and nice “catch light” highlights in his eyes. In addition the little bit of extra light on his face meant that the back wall of the forge would appear just that bit darker due to the increased contrast between his face and the back wall. This is why we light…. not just to ensure enough light to shoot with, I had plenty of light, if I remember right I had a 1 stop ND in the matte box. But to create contrast, it’s the contrast that gives the image depth, it’s contrast that makes an image look interesting.
The final stage was to shoot the treasure chest and ornate jars that would show off the the lenses macro and close up performance. The treasure chest is a truly amazing thing. It weighs around 80kg. The locking mechanism is quite fascinating and I still struggle to believe that it was all hand made. The small metal jars are made out of folded and welded steel. It’s the folds in the metal that create the patterns that you see.
Once again we used the jib to add motion to the shots. I also used the macro function of both the MK18-55mm and MK50-135mm lenses. This function allows you to get within inches of the object that you are shooting. It’s a great feature to have and it really adds to the versatility of these lenses.
We wrapped at 7pm. Time to pack away the kit. It’s really important not to rush at this stage. Like everyone else I want to get home as quick as I can. But it’s important to pack your kit carefully and properly. There is nothing more annoying than when you start prepping for the next shoot finding that something has been broken or is missing because you rushed to pack up at the end of the previous shoot. Once you have packed everything away don’t forget to do that last walk through all the locations you’ve shot in to make sure you haven’t forgotten something.
I shot a little over hour of material. As it was mostly 60p 4K raw that came to about 1.5TB This was backed up on site using a Nexto-DI NSB25 which is a stand alone device that makes 2 verified copies of everything on 2 different hard drives. The film was edited using Adobe Premiere CC which handles Sony’s raw very easily. Grading was completed using DaVinci Resolve. I spent 2 days editing and a day grading the first version of the film. Then I spent another day re-grading it for HDR and producing the different versions that would be needed. All in, including coming up with the concept, finding the location, prepping, shooting and post took it took about 7 to 8 full work days to put this simple 4 minute film together.
Here’s the behind the scenes video
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Read More
Necessary cookies help make a website usable by enabling basic functions like page navigation and access to secure areas of the website. The website cannot function properly without these cookies.
Name
Domain
Purpose
Expiry
Type
wpl_user_preference
www.xdcam-user.com
WP GDPR Cookie Consent Preferences
1 year
HTTP
YSC
youtube.com
YouTube session cookie.
54 years
HTTP
Marketing cookies are used to track visitors across websites. The intention is to display ads that are relevant and engaging for the individual user and thereby more valuable for publishers and third party advertisers.
Name
Domain
Purpose
Expiry
Type
VISITOR_INFO1_LIVE
youtube.com
YouTube cookie.
6 months
HTTP
Analytics cookies help website owners to understand how visitors interact with websites by collecting and reporting information anonymously.
Name
Domain
Purpose
Expiry
Type
__utma
xdcam-user.com
Google Analytics long-term user and session tracking identifier.
2 years
HTTP
__utmc
xdcam-user.com
Legacy Google Analytics short-term technical cookie used along with __utmb to determine new users sessions.
54 years
HTTP
__utmz
xdcam-user.com
Google Analytics campaign and traffic source tracking cookie.
6 months
HTTP
__utmt
xdcam-user.com
Google Analytics technical cookie used to throttle request rate.
Session
HTTP
__utmb
xdcam-user.com
Google Analytics short-term functional cookie used to determine new users and sessions.
Session
HTTP
Preference cookies enable a website to remember information that changes the way the website behaves or looks, like your preferred language or the region that you are in.
Name
Domain
Purpose
Expiry
Type
__cf_bm
onesignal.com
Generic CloudFlare functional cookie.
Session
HTTP
NID
translate-pa.googleapis.com
Google unique id for preferences.
6 months
HTTP
Unclassified cookies are cookies that we are in the process of classifying, together with the providers of individual cookies.
Name
Domain
Purpose
Expiry
Type
_ir
api.pinterest.com
---
Session
---
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies we need your permission. This site uses different types of cookies. Some cookies are placed by third party services that appear on our pages.