Tag Archives: X-OCN

How Good Is The Raw From An FX9 Compared To The F55?

This is a very good question that came up in one of the F5/F55/FX9 facebook groups that I follow. The answers are also mostly relevant to users of the FX6, FX3 and the A7SIII.

There were two parts to it: Is the FX9’s raw out as good as the raw from the F5/F55 and then – do I really need raw.
 
In terms of image quality I don’t think there is any appreciable difference, going between the raw from an FX9 and the raw from an F5/F55 is a sideways step.

The F5/F55 with either Sony Raw or X-OCN offer great 16 bit linear raw in a Sony MXF package. The files are reasonably compact, especially if you are using the R7 and X-OCN. There are some compatibility issues however and you can’t use the Sony Raw/X-OCN in FCP-X and the implementation in Premier Pro is poor.

The 16 bit out from the FX9/XDCA-FX9 gets converted to 12 bit log raw by the Atomos recorders, currently the only recording options – but in reality you would be extremely hard pushed to really see any difference between 16 bit linear raw and 12 bit log raw from this level of camera.
 
Recording the 12 bit log raw as ProRes Raw means that you are tied to just FCP-X, Premiere Pro (poor implementation again) and Scratch. The quality of the images that can be stored in the 2 different raw formats is little different, 16 bit linear has more code values but distributed very inefficiently. 12 bit log raw has significantly fewer code values but the distribution is far more efficient.  AXS media is very expensive, SSD’s are cheap. AXS card readers are expensive, SSD adapters are cheap. So there are cost implications.

Personally I feel the reduced noise levels from the FX9 makes footage from the FX9 more malleable than footage from the F5/F55 and if you are shooting in FF6K there is more detail in the recordings, even though they are downsampled to 4K raw. But the FF6K will have more rolling shutter compared to an F55/F5.

Working with Sony Raw/X-OCN in Resolve is delightfully easy, especially if you use ACES and it’s a proper grading package. If you want to work with ProResRaw in Resolve you will need to use Apple Compressor or FCP-X to create a demosaiced log file, which even if you use ProRes444 or XQ not the same as working from the original raw file. For me that’s the biggest let down. If I could take ProResRaw direct into Resolve I’d be very happy. But it is still perfectly possible to get great footage from ProResRaw by transcoding if you need to.

As to whether you need raw, only you can answer that fr yourself. There are many factors to consider.  What’s your workflow, how are you delivering the content. Will the small benefit from shooting raw actually be visible to your clients?
 
Are you capturing great content – in which case raw may give you a little more, or are you capturing less than ideal material – in which case raw isn’t going to be a get out of jail card. Raw of any flavour works best when it’s properly exposed and captured well.

I would suggest anyone trying to figure out whether they need raw or not to start by to grading the XAVC-I from the FX9 and see how far you can push that,  then compare it to the raw. I think may be surprised by how little difference there is, XAVC-I S-Log3 is highly gradable and if you can’t get the look you want from the XAVC-I raw isn’t going to be significantly different. It’s not that there is anything wrong with raw, not at all. But it does get rather over sold as a miracle format that will transform what you can do. It won’t perform those miracles, but if everything else has been done to the highest possible standards then raw does offer the very best that you can get from these cameras.
 
As a middle ground also consider non raw ProRes. Again the difference between that and XAVC-I is small, but it may be that whoever is doing the post production finds it easier to work with. And the best bit is there are no compatibility issues, it works everywhere.

But really my best recommendation is to test each workflow for yourself and draw your own conclusions. I think you will find the differences between each much smaller than you might assume. So then you will need to decide which works for you based on cost/effort/end result.
 
Sometimes best isn’t always best! Especially if you can get to where you need to be more easily as an easy workflow gives you more time to spend on making it look the way you want rather than fussing with conversions or poor grading software.

DaVinci Resolve, ACES and the “Sony Raw” input transform.

A quick heads up for users of Resolve with Sony Raw and X-OCN. Don’t make the same mistake I have been making. For some time I have been unhappy with the way the Sony raw looked in DaVinci Resolve and ACES prior to grading. Apparently there used to be a small problem with the raw input transform that could lead to a red/pink hue getting added to the footage. This problem was fixed some time ago. You should now not use the the “Sony Raw” input transform, if you do, it will tint your Raw or X-OCN files slightly pink/red. Instead you should select “no transform”. With no transform selected my images look so much nicer and match Sony’s own Raw Viewer so much better. Thanks to Nick Shaw of Antler Post for helping me out on this and all on the CML list.

How can 16 bit X-OCN deliver smaller files than 10 bit XAVC-I?

Sony’s X-OCN (XOriginal Camera Negative) is a new type of codec from Sony. Currently it is only available via the R7 recorder which can be attached to a Sony PMW-F5, F55 or the new Venice cinema camera.

It is a truly remarkable codec that brings the kind of flexibility normally only available with 16 bit linear raw files but with a files size that is smaller than many conventional high end video formats.

Currently there are two variations of X-OCN.

X-OCN ST is the standard version and then X-OCN LT is the “light” version. Both are 16 bit and both contain 16 bit data based directly on what comes off the cameras sensor. The LT version is barely distinguishable for a 16 bit linear raw recording and the ST version “visually lossless”. Having that sensor data in post production allows you to manipulate the footage over a far greater range than is possible with tradition video files. Traditional video files will already have some form of gamma curve as well as a colour space and white balance baked in. This limits the scope of how far the material can be adjusted and reduces the amount of picture information you have (relative to what comes directly off the sensor) .

Furthermore most traditional video files are 10 bit with a maximum of 1024 code values or levels within the recording. There are some 12 bit codecs but these are still quite rare in video cameras. X-OCN is 16 bit which means that you can have up to 65,536 code values or levels within the recording. That’s a colossal increase in tonal values over traditional recording codecs.

But the thing is that X-OCN LT files are a similar size to Sony’s own XAVC-I (class 480) codec, which is already highly efficient. X-OCN LT is around half the size of the popular 10 bit Apple ProRes HQ codec but offers comparable quality. Even the high quality ST version of X-OCN is smaller than ProRes HQ. So you can have image quality and data levels comparable to Sony’s 16 bit linear raw but in a lightweight, easy to handle 16 bit file that’s smaller than the most commonly used 10 bit version of ProRes.

But how is this even possible? Surely such an amazing 16 bit file should be bigger!

The key to all of this is that the data contained within an X-OCN file is based on the sensors output rather than traditional video.  The cameras that produce the X-OCN material all use bayer sensors. In a traditional video workflow the data from a bayer sensor is first converted from the luminance values that the sensor produces into a YCbCr or RGB signal.

So if the camera has a 4096×2160 bayer sensor in a traditional workflow this pixel level data gets converted to 4096×2160 of Green plus 4096×2160 of Red, plus 4096×2160 of Green (or the same of Y, Cb and Cr). In total you end up with 26 million data points which then need to be compressed using a video codec.

Bayer-to-RGB How can 16 bit X-OCN deliver smaller files than 10 bit XAVC-I?However if we bypass the conversion to a video signal and just store the data that comes directly from the sensor we only need to record a single set of 4096×2160 data points – 8.8 million. This means we only need to store 1/3rd as much data as in a traditional video workflow and it is this huge data saving that is the main reason why it is possible for X-OCN to be smaller than traditional video files while retaining amazing image quality. It’s simply a far more efficient way of recording the data from a bayer camera.

Of course this does mean that the edit or playback computer has to do some extra work because as well as decoding the X-OCN file it has to be converted to a video file, but Sony developed X-OCN to be easy to work with – which it is. Even a modest modern workstation will have no problem working with X-OCN. But the fact that you have that sensor data in the grading suite means you have an amazing degree of flexibility. You can even adjust the way the file is decoded to tailor whether you want more highlight or shadow information in the video file that will created after the X-OCN is decoded.

Why isn’t 16 bit much bigger than 10 bit? Normally a 16 bit file will be bigger than a 10 bit file. But with a video image there are often areas of information that are very similar. Video compression algorithms take advantage of this and instead of recording a value for every pixel will record a single value that represents all of the similar pixels. When you go from 10 bit to 16 bit, while yes, you do have more bits of data to record a greater percentage of the code values will be the same or similar and as a result the codec becomes more efficient. So the files size does increase a bit, but not as much as you might expect.

So, X-OCN, out of the gate, only needs to store 1/3rd of the data points of a similar traditional RGB or YCbCr codec. Increasing the bit depth from the typical 10 bit bit depth of a regular codec to the 16 bits of X-OCN does then increase the amount of data needed to record it. But the use of a clever algorithm to minimise the data needed for those 16 bits means that the end result is a 16 bit file only a bit bigger than XAVC-I but still smaller than ProRes HQ even at it’s highest quality level.

Sony Venice. Dual ISO’s, 1 stop ND’s and Grading via Metadata.

With the first of the production Venice cameras now starting to find their way to some very lucky owners it’s time to take a look at some features that are not always well understood, or that perhaps no one has told you about yet.

Dual Native ISO’s: What does this mean?

An electronic camera uses a piece of silicon to convert photons of light into electrons of electricity. The efficiency at doing this is determined by the material used. Then the amount of light that can be captured and thus the sensitivity is determined by the size of the pixels. So, unless you physically change the sensor for one with different sized pixels (which will in the future be possible with Venice) you can’t change the true sensitivity of the camera. All you can do is adjust the electronic parameters.

With most video cameras the ISO is changed by increasing the amount of amplification applied to the signal coming off the sensor. Adding more gain or increasing the amplification will result in a brighter picture. But if you add more amplification/gain then the noise from the sensor is also amplified by the same amount. Make the picture twice as bright and normally the noise doubles.

In addition there is normally an optimum amount of gain where the full range of the signal coming from the sensor will be matched perfectly with the full recording range of the chosen gamma curve. This optimum gain level is what we normally call the “Native ISO”. If you add too much gain the brightest signal from the sensor would be amplified too much and exceed the recording range of the gamma curve. Apply too little gain and your recordings will never reach the optimum level and darker parts of the image may be too dark to be seen.

As a result the Native ISO is where you have the best match of sensor output to gain. Not too much, not too little and hopefully low noise. This is typically also referred to as 0dB gain in an electronic camera and normally there is only 1 gain level where this perfect harmony between sensor, gain and recording range is achieved, this becoming the native ISO.

Side Note: On an electronic camera ISO is an exposure rating, not a sensitivity measurement. Enter the cameras ISO rating into a light meter and you will get the correct exposure. But it doesn’t really tell you how sensitive the camera is as ISO has no allowance for increasing noise levels which will limit the darkest thing a camera can see.

Tweaking the sensor.

However, there are some things we can tweak on the sensor that effect how big the signal coming from the sensor is. The sensors pixels are analog devices. A photon of electricity hits the silicone photo receptor (pixel) and it gets converted into an electron of electricity which is then stored within the structure of the pixel as an analog signal until the pixel is read out by a circuit that converts the analog signal to a digital one, at the same time adding a degree of noise reduction. It’s possible to shift the range that the A to D converter operates over and the amount of noise reduction applied to obtain a different readout range from the sensor. By doing this (and/or other similar techniques, Venice may use some other method) it’s possible to produce a single sensor with more than one native ISO.

A camera with dual ISO’s will have two different operating ranges. One tuned for higher light levels and one tuned for lower light levels. Venice will have two exposure ratings: 500 ISO for brighter scenes and 2500 ISO for shooting when you have less light. With a conventional camera, to go from 500 ISO to 2500 ISO you would need to add just over 12dB of gain and this would increase the noise by a factor of more than 4. However with Venice and it’s dual ISO’s, as we are not adding gain but instead altering the way the sensor is operating the noise difference between 500 ISO and 2500 ISO will be very small.

You will have the same dynamic range at both ISO’s. But you can choose whether to shoot at 500 ISO for super clean images at a sensitivity not that dissimilar to traditional film stocks. This low ISO makes it easy to run lenses at wide apertures for the greatest control over the depth of field. Or you can choose to shoot at the equivalent of 2500 ISO without incurring a big noise penalty.

One of Venice’s key features is that it’s designed to work with Anamorphic lenses. Often Anamorphic lenses are typically not as fast as their spherical counterparts. Furthermore some Anamorphic lenses (particularly vintage lenses) need to be stopped down a little to prevent excessive softness at the edges. So having a second higher ISO rating will make it easier to work with slower lenses or in lower light ranges.

COMBINING DUAL ISO WITH 1 STOP ND’s.

Next it’s worth thinking about how you might want to use the cameras ND filters. Film cameras don’t have built in ND filters. An Arri Alexa does not have built in ND’s. So most cinematographers will work on the basis of a cinema camera having a single recording sensitivity.

The ND filters in Venice provide uniform, full spectrum light attenuation. Sony are incredibly fussy over the materials they use for their ND filters and you can be sure that the filters in Venice do not degrade the image. I was present for the pre-shoot tests for the European demo film and a lot of time was spent testing them. We couldn’t find any issues. If you introduce 1 stop of ND, the camera becomes 1 stop less sensitive to light.  In practice this is no different to having a camera with a sensor 1 stop less sensitive. So the built in ND filters, can if you choose, be used to modify the base sensitivity of the camera in 1 stop increments, up to 8 stops lower.

So with the dual ISO’s and the ND’s combined you have a camera that you can setup to operate at the equivalent of 2 ISO all the way up to 2500 ISO in 1 stop steps (by using 2500 ISO and 500 together you can have approximately half stops steps between 10 ISO and 650 ISO). That’s an impressive range and at no stage are you adding extra gain. There is no other camera on the market that can do this.

On top of all this we do of course still have the ability to alter the Exposure Index of the cameras LUT’s to offset the exposure to move the exposure mid point up and down within the dynamic range. Talking of LUT’s I hope to have some very interesting news about the LUT’s for Venice. I’ve seen a glimpse of the future and I have to say it looks really good!

METADATA GRADING.

The raw and X-OCN material from a Venice camera (and from a PMW-F55 or F5 with the R7 recorder) contains a lot of dynamic metadata. This metadata tells the decoder in your grading software exactly how to handle the linear sensor data stored in the files. It tells your software where in the recorded data range the shadows start and finish, where the mid range sits and where the highlights start and finish. It also informs the software how to decode the colors you have recorded.

I recently spent some time with Sony Europe’s color grading guru Pablo Garcia at the Digital Motion Picture Center in Pinewood. He showed me how you can manipulate this metadata to alter the way the X-OCN is decoded to change the look of the images you bring into the grading suite. Using a beta version of Black Magic’s DaVinci Resolve software, Pablo was able to go into the clips metadata in real time and simply by scrubbing over the metadata settings adjust the shadows, mids and highlights BEFORE the X-OCN was decoded. It was really incredible to see the amount of data that Venice captures in the highlights and shadows. By adjusting the metadata you are tailoring the the way the file is being decoded to suit your own needs and getting the very best video information for the grade. Need more highlight data – you got it. Want to boost the shadows, you can, at the file data level before it’s converted to a traditional video signal.

It’s impressive stuff as you are manipulating the way the 16 bit linear sensor data is decoded rather than a traditional workflow which is to decode the footage to a generic intermediate file and then adjust that. This is just one of the many features that X-OCN from the Sony Venice offers. It’s even more incredible when you consider that a 16 bit linear  X-OCN LT file is similar in size to 10 bit XAVC-I(class 480) and around half the size of Apples 10 bit ProRes HQ.  X-OCN LT looks fantastic and in my opinion grades better than XAVC S-Log. Of course for a high end production you will probably use the regular X-OCN ST codec rather than the LT version, but ST is still smaller than ProRes HQ. What’s more X-OCN is not particularly processor intensive, it’s certainly much easier to work with X-OCN than cDNG. It’s a truly remarkable technology from Sony.

Next week I will be shooting some more test with a Venice camera as we explore the limits of what it can do. I’ll try and get some files for you to play with.

Big Update for Sony Raw Viewer.

rawviewer-01-large-e1480363307344 Big Update for Sony Raw Viewer.
Sony’s Raw Viewer for raw and X-OCN file manipulation.

Sony’s raw viewer is an application that has just quietly rumbled away in the background. It’s never been a headline app, just one of those useful tools for viewing or transcoding Sony’s raw material. I’m quite sure that the majority of users of Sony’s raw material do their raw grading and processing in something other than raw viewer.

But this new version (2.3) really needs to be taken very seriously.

Better Quality Images.

For a start Sony have always had the best de-bayer algorithms for their raw content. If you de-bayer Sony raw in Resolve and compare it to the output from previous versions of Raw Viewer, the raw viewer content always looked just that little bit cleaner. The latest versions of Raw Viewer are even better as new and improved algorithms have been included! It might not render as fast, but it does look very nice and can certainly be worth using for any “problem” footage.

Class 480 XAVC and X-OCN.

Raw Viewer version 2.3 adds new export formats and support for Sony’s X-OCN files. You can now export to both XAVC class 480 and class 300, 10 or 12bit ProRes (HD only unfortunately), DPX and SStP.  XAVC Class 480 is a new higher quality version of XAVC-I that could be used as a ProResHQ replacement in many instances.

Improved Image Processing.

Color grading is now easier than ever thanks to support for Tangent Wave tracker ball control panels along with new grading tools such as Tone Curve control. There is support for EDL’s and batch processing with all kind of process queue options allowing you to prioritise your renders. Although Raw Viewer doesn’t have the power of a full grading package it is very useful for dealing with problem shots as the higher quality de-bayer provides a cleaner image with fewer artefacts. You can always take advantage of this by transcoding from raw to 16 bit DPX or Open EXR so that the high quality de-bayer takes place in Raw Viewer and then do the actual grading in your chosen grading software.

HDR and Rec.2100

If you are producing HDR content version 2.3 also adds support for the PQ and HLG gamma curves and Rec.2100 It also now includes HDR waveform displays. You can use Raw Viewer to create HDR LUT’s too.

So all-in-all Raw Viewer has become a very powerful tool for Sony’s raw and XOCN content that can bring a noticeable improvement in image quality compared to de-bayering in many of the more commonly used grading packages.

Download Link for Sony Raw Viewer: http://www.sonycreativesoftware.com/download/rawviewer