Tag Archives: CA

Reducing CA Artefacts In The Sony FX9.

I’ve been experimenting a bit trying to reducing the effect of Green/Cyan CA with the FX9. I have discovered a couple of things that can help reduce interactions between the cameras processing and areas of high contrast that may be exhibiting bright green/cyan fringes.

First thing to note is that a lens with less or no CA will not have the same issue. But as no lens is totally CA free the below settings can help.

These changes are for Custom Mode Only.

1: Turn OFF the aperture correction in the paint menu. Turning off the aperture correction noticeably reduces the cameras tendency to create black halos in areas of extreme contrast and it also reduces the enhancement of areas of strong CA. This has a softening/smoothing effect on bright CA making it much less noticeable. There is very, very little loss of sharpness in the rest of the image and I actually prefer the way the camera looks with this turned off.

2: Use the Multi-Matrix to reduce the brightness of Green/Cyan CA. The most common examples of CA causing an issue are with background out of focus high contrast areas. In this case the CA is normally Green/Cyan. It’s possible to tune the cameras multimatrix to reduce the brightness of these green/cyan edges. If you turn ON the mutli-matrix and then select CY+ and set this to -30 you will see a very useful reduction in the intensity of the CA. For a stronger reduction in addition select CY and set this to -15. 
Changing these setting will have an impact on the reproduction of other cyan objects in your shots, but you should see this in the VF and testing various scenes these changes are typically not noticable. In some cases I am finding I actually like this slightly modified look!

Use both of the above together for the strongest impact. But if you are only going to use one, turn off the aperture correction.

Without-adjustments_1.2.1-1024x576 Reducing CA Artefacts In The Sony FX9.
CA on over exposed areas with no corrections (400% zoom)


With-Aperture-Off-CY-adjust_1.1.1-1024x576 Reducing CA Artefacts In The Sony FX9.
With Aperture turned OFF and the CY+ set to -30 (400% zoom)

What causes CA or Purple and Blue fringes in my videos?

Blue and purple fringes around edges in photos and videos are nothing new. Its a problem we have always had. telescopes and binoculars can also suffer. It’s normally called chromatic aberration or CA. When we were all shooting in standard definition it wasn’t something that created too many issues, but with HD cameras and 4K cameras it’s a much bigger issue because as you increase the resolution of the system (camera + lens) generally speaking, CA becomes much worse.

As light passes through a glass lens the different wavelengths that result in the different colours we see are diffracted and bet by different amounts. So the point behind the lens where the light comes into sharp focus will be different for red light to blue light.

CA1-300x194 What causes CA or Purple and Blue fringes in my videos?
A simple glass lens will bend red, green and blue wavelengths by different amounts, so the focus point will be slightly different for each.

The larger the pixels on your sensor the less of an issue this will be. Lets say for example that on an SD sensor with big pixels, when the blue light is brought to best focus the red light is out of focus by 1/2 a pixel width. All you will see is the very slightest red tint to edges as a small bit of out of focus red spills on to the adjacent pixel. Now consider what happens if you increase the resolution of the sensor. If you go from SD to HD the pixels need to made much smaller to fit them all on to the same size sensor. HD pixels are around half the size of SD pixels (for the same size sensor). So now that out of focus red light that was only half the width of an SD pixel will completely fill the adjacent pixels so the CA becomes more noticeable.

In addition as you increase the resolution of the lens you need to make the focus of the light “tighter” and less blurred to increase the lenses resolving power. This has the effect of making the difference between the focus points of the red and blue light more distinct, there is less blurring of each colour, so less bleed of one colour into the other and as a result more CA as the focus point for each wavelength becomes more distinct. When each focus point is more distinct the difference between the in focus and out of focus light becomes more obvious, so the colour fringing becomes more obvious.

This is why SD lenses very often show less CA than HD lenses, a softer more blurry SD lens will have less distinct CA. Lens manufacturers will use exotic types of glass to try to combat CA. Some types of glass have a negative index so blue may focus closer than red and then other types of glass may have a positive index so red may focus closer than blue. By mixing positive and negative glass elements within the lens you can cancel out some of the colour shift. But this is very difficult to get right across all focal lengths in zoom lenses so some CA almost always remains. The exotic glass used in some of the lens elements can be incredibly expensive to produce and is one of the reasons why good lenses don’t come cheap.

Rather than trying to eliminate every last bit of CA optically the other approach is to electronically reduce the CA by either shifting the R G B channels in the camera electronically or reducing the saturation around high contrast edges. This is what ALAC or CAC does. It’s easier to get a better result from these systems when the lens is precisely matched to the camera and I think this is why the CA correction on the Sony kit lenses tends to be more effective than that of the 3rd party lenses.

Sony recently released firmware updates for the PMW200 and PMW300 cameras that improves the performance of the electronic CA reduction of these cameras when using the supplied kit lenses.