Tag Archives: flat

Shooting Flat – No it’s not!

I know that many of my readers like to shoot log. One of the most common terms used around shooting log is “shooting flat”. Lets take a look at that term and think about what it actually means.

One description of a flat image might be – “An image with low contrast”. Certainly an image with low contrast can be considered flat.

Once upon a time shooting flat meant lighting a scene so that there was very little contrast. The background in an interview might be quite well  lit. You would avoid deep shadows or strong highlights. This was done because cameras had very limited dynamic ranges. These flat images of low contrast scenes could then have the contrast boosted in post production to make them look better.

8 years ago, with the advent of DSLR cameras that could shoot with film like depths of field it became fashionable to shoot flat because digital film cameras  when shooting using log produced an image that looks flat when viewed on a conventional TV or monitor.

But lets think about that for a moment. A typical digital cinema camera can capture 14 stops of dynamic range. A scene with 14 stops of dynamic range contains a huge contrast range, perhaps a brilliant bright sky and deep shadows, you can possibly describe the capture a scene with 14 stops of dynamic range as “flat”?

The answer is you can’t – or at least you shouldn’t because the recording  isn’t flat. The dynamic range that most digital cinema cameras can capture is not flat, not at all.

The problem is that a normal TV or video monitor can’t show a very big dynamic range. A conventional TV can only show around 6 stops. If you take a log video signal with a 14 stop image and try to show that on a 6 stop screen you will be squashing the highlights and shadows closer together, so the highlight that was at +14 stops in the scene and is recorded at 100%, gets pushed closer to the deepest shadow in the scene that is recorded at 1%.

On a normal 6 stop TV the 100% recording level is shown at +6 stops while the deepest shadow will be at 1%, so now the 14 stop recording is being shown with only 6 stops between the deepest black and the brightest highlight. Instead of the highlight being dazzlingly bright it’s now just a bright white and not all that much brighter than the shadows. As a result the image on the screen looks all wrong, nothing like what you recorded and it appears to be “flat”.

BUT THE DATA IN THE FILE IS NOT FLAT – that recording contains a high contrast, 14 stop image – it’s the inability of the TV or monitor to show it correctly that makes it look wrong, not that you have shot flat.

In the early days of DSLR shooting many DSLR shooters decided to mimic the way the image from a digital cinema camera looks flat on a normal TV, perhaps in the miss-guided belief that a flat image must always have a greater dynamic range. This definitely isn’t always the case. I can take any regular dynamic range image and make it look flat by reducing the contrast, raising the blacks a bit, shifting the gamma perhaps, that’s easy. But that doesn’t increase the dynamic range that is captured. Changing the capture range of a camera typically requires fundamental changes to the way it operates rather than simple tweaks to the basic picture settings.

So we went through a period where shooting a flat looking image with a DSLR was the trendy way to shoot because on a normal TV or monitor the image recorded is reminiscent of the image from a true digital cinema camera shooting log, even though in practice the “flat look”  was often damaging the image rather than improving it.

Now there are many digital cinema cameras that can capture a very big dynamic range using log encoding and these images look washed out and flat on a normal monitor or TV because of the miss-match between the camera and the monitor, not because the captured scene is flat. But we still call this shooting flat (wrong)!

Why? In many cases people like to leave the image this way as they like this “incorrect” look. Flat is trendy, it’s fashionable, at least to those inside the TV and Video production world. I’m not sure that the wider general audience really understands why their pictures look washed out.

If you have a monitor with high dynamic range display capabilities such as a Atomos Shogun Flame or Inferno, that can show a large dynamic range then you’ll know that if you feed it log and set the display range to HDR and choose the right gamma curve, the picture on the screen is no longer flat, it’s bright and contrasty. This isn’t a LUT or any other cheat. The monitor is simply showing the image with a range much closer to the capture range and now it looks right again.

storm-PQ-14stop-1024x577 Shooting Flat - No it's not!
This is a high dynamic range image. View it on an HDR TV set to HDR10 and it will be brilliantly bright, highly colorfull and full of contrast. On a regular TV or monitor it looks flat and washed out because the regular TV can’t show it properly.

So next time you use the term “shooting Flat” think very carefully about what it actually means and whether you are really shooting flat or whether it’s simply a case of using the wrong monitor. Using words or terms like this incorrectly causes all kinds of problems. For example most people think that log footage is flat and that that’s how it’s supposed to look. But it isn’t flat and it’s not supposed to look flat, we are just using the wrong monitors!

To shoot flat or not to shoot flat?

There is a lot of hype around shooting flat. Shooting flat has become a fashionable way to shoot and many individuals and companies have released camera settings said to provide the flattest images or to maximise the camera dynamic range. Don’t get me wrong, I’m not saying that shooting flat is necessarily wrong or that you shouldn’t shoot flat, but you do need to understand the compromises that can result from shooting flat.

First of all what is meant by shooting flat? The term comes from the fact that images shot flat look, err, well…. flat when viewed on a standard TV or monitor. They have low contrast and may often look milky or washed out. Why is this? Well most TV’s and monitors only have a contrast range that is the equivalent of about 6 stops. (Even a state of the art OLED monitor only has a range of about 10 to 11 stops). The whole way we broadcast and distribute video is based on this 6 stop range. The majority of HD TV’s and monitors use a gamma curve based on REC-709, which also only has a 6 to 7 stop range. Our own visual system has a dynamic range of up to 20 stops (there is a lot of debate over exactly how big the range really is and in bright light our dynamic range drops significantly). So we can see a bigger range than most TV’s can show, so we can see bright clouds in the sky as well as deep shadows while a TV would struggle to show the same scene.

Modern camera sensors have dynamic ranges larger than 6 stops, so we can almost always capture a greater dynamic range than the average monitor can show. Now consider this carefully: If you capture a scene with a 6 stop range and then show that scene on a monitor with a 6 stop range, you will have a very true to life and accurate contrast range. You will have a great looking high contrast image. This is where having matching gammas in the camera and on the monitor comes in to play. Match the camera to the monitor and the pictures will look great, 6 stops in, 6 stops out. But, and it’s a big BUT. Real world scenes very often have a greater range than 6 or 7 stops.

A point to remember here: A TV or monitor has a limited brightness range. It can only ever display at it’s maximum brightness and best darkness. Trying to drive it harder with a bigger signal will not make it any brighter.

Feed the monitor with an image with a 6 stop range and a Rec-709 signal and the monitor will be showing it’s blackest blacks and it’s brightest whites.

But what happens if we simply feed a 6 stop monitor with an 11 stop image? Well it can’t produce a brighter picture so the brightest parts of the displayed scene are no brighter and the darker, no darker so the image you see appears to have the same brightness range but with less contrast as 11 stops are being squeezed into a 6 stop brightness range, it starts to look flat and un-interesting. The bigger the dynamic range you try to show on your 6 stop monitor, the flatter the image will look. Clearly this is undesirable for direct TV broadcasting etc. So what is normally done is to map the first 5  stops from the camera more or less directly to the first 5 stops of the display so that the all important shadows and mid-tones have natural looking contrast. Then take the brighter extended range of the camera, which may be 3 or 4 stops and map those into the remaining 1 or 2 stops of the monitor. This is a form of compression. In most cases we don’t notice it as it is only effecting highlights and our own visual system tends to concentrate on shadows and mid-tones while largely ignoring highlights. This compression is achieved using techniques such as knee compression and is one of the things that gives video it’s distinctive electronic look.

A slightly different approach to just compressing the highlights is to compress much more of the cameras output. Gamma curves like Sony’s cinegammas or hypergammas use compression that gets progressively more aggressive as you go up the exposure range. This allows even greater dynamic ranges to be captured at the expense of a slight lack of contrast in the viewed image. Taking things to the maximum we have gamma curves that use log based compression where each brighter stop is in effect compressed twice as much as the previous one. Log gamma curves like S-Log or Log-C are capable of capturing massive dynamic ranges of anywhere up to 14 stops. View these log compressed images back on your conventional TV or monitor and because even the mid range is highly compressed  they will look very low contrast and very flat indeed.

Note: Log gamma does not actually increase compression, in fact it allocates exactly the sane amount of data to every stop of exposure. However it must be remembered that for every stop you go up in exposure the brightness of the scene becomes 2 times brighter. So to record the scene accurately you should use twice as much data for every stop you add. But Log does not do this, it just adds a small amount of extra data. Thus in effect RELATIVE TO THE BRIGHTNESS RANGE OF THE SCENE the amount of data is halved for each stop you go up in exposure.

So, if you have followed this article so far you should understand that we can capture a greater dynamic range than most monitors can display, but when doing so the image looks un-interesting and flat.

So, if the images look bad, why do it? The benefits of capturing a big dynamic range are that highlights are less likely to look over exposed and  your final image contrast can be adjusted in post production. These are the reasons why it is seen as desirable to shoot flat.

But there are several catches. One is that the amount of image noise that the camera produces will limit how far you can manipulate your image in post production. The codec that you use to record your pictures may also limit how much you can manipulate your image due to compression artefacts such as banding or blocking. Another is that it is quite easy to create a camera profile or setup that produces a flat looking image, for example by artificially raising the shadows, that superficially looks like a flat, high dynamic range image, but doesn’t actually provide a greater dynamic range, all that’s happened is that shadows have been made brighter but no extra dynamic range has actually been gained.

Of course there are different degrees of flat. There is super flat log style shooting as well as intermediate flat-ish cinegamma or hypergamma shooting. But it if you are going to shoot flat it is vital that the recorded image coming from the camera will stand up to the kind of post production manipulation you wish to apply to it. This is especially important when using highly compressed codecs.

When you use a high compression codec it adds noise to the image, this is in addition to any sensor noise etc. If you create a look in camera, the additional compression noise is added after the look has been created. As the look has been set, the compression noise is not really going to change as you won’t be making big changes to the image. But if you shoot flat, when you start manipulating the image the compression noise gets pushed, shoved and stretched, this can lead to degradation of the image compared to creating the look in camera. In addition you need more data to record a bigger dynamic range, so a very flat (wide dynamic range) image may be pushing the codec very hard resulting in even more compression noise and artefacts.

So if you do want to shoot flat you need a camera with very low noise. You also need a robust codec, preferably 10 bit (10 bit has more data levels than 8 bit so contains more tonal information) and you need to ensure that the camera setup or gamma is truly capturing a greater dynamic range, otherwise your really wasting your time.

Shooting flat is a great tool in the cinematographers tool box and with the right equipment can bring great benefits in post production flexibility. Most of the modern large sensor cameras with their low noise sensors and ability to record to high end 10 bit codecs either internally or externally are excellent tools for shooting flat. But small sensor cameras with their higher noise levels do not make the best candidates for shooting flat. In many cases a better result will be obtained by creating your desired look in camera. Or at least getting close to the desired look in camera and then just tweaking and fine tuning the look in post.

As always, test your workflow. Just because so and so shoots flat with camera A, it doesn’t mean that you will get the same result with camera B. Shoot a test before committing to shooting flat on a project, especially if the camera isn’t specifically designed and set up for flat shooting. Shooting flat will not turn a poor cinematographer into a great cinematographer, in fact it may make it harder for a less experienced operator as hitting the cameras exposure sweet spot can be harder and focussing is trickier when you have a flat low contrast image.