Sony European Workshop Tour.

The PXW-FS7, Sony best selling pro video camera.

Just to let you know that from next month Sony we will be holding a tour in selected European countries to showcase their Handheld camcorder range,  and as a result starting from November they will visit 4 locations across the UK, as detailed below. I will be in attendance at the UK events offering free advice and info, so if there is anything you are struggling with why not drop in and see me:

07/11/17              KitPlus Show, MediaCityUK Studios, Manchester, M50 2HQ

14/11/17              Vanilla, Great Titchfield Street, London, W1W 5BB

21/11/17              Principality Stadium, Cardiff, CF10 1NS

07/12/17              Glasgow Science Centre, Glasgow,G51 1EA

Sony will be exhibiting kit and I will be holding “HDR for All” seminars in all the above. The registration page can be found here:

http://m.info.pro.sony.eu/webApp/SonyProTourUK

4  different product areas will be on show as follows:

Large Format Sensor

Showing PXW-FS7 II, FS7 & FS5

4K HDR Production

Showing PXW-Z90, PXW-Z150 & HXR-NX80 (TBC)

HD Production

Showing PXW-X70, PXW-X200, HXR-NX100

Live Event Production

Showing MCX-500, RM-30BP, HXR-NX5R, SRG-360, RM-IP10 and possibly an RX0 (TBC)

 

The Dangers Of Hidden Moisture.

Electronics and water are two things that just don’t match. We all know this and we all know that dropping a camera into a river or the sea probably isn’t going to do it a great deal of good. But one of the very real risks with any piece of electronics is hidden moisture, moisture you can’t see.

Most modern high definition or 4K pro video cameras have fans and cooling systems designed to keep them operating for long periods. But these cooling systems mean that the camera will be drawing in air from the outside world into the cameras interior. Normally this is perfectly fine, but if you are operating in rain or a very wet environment such as high humidity, spray, mist, fog etc it will mean a lot of moisture circulating through the camera and this can be a cause of problems.

If the camera is warm relative to the ambient temperature then generally humid air will simply pass through the camera (or other electronics) without issue. But if the camera is colder than the airs dewpoint then some of the moisture in the air will condense on the cameras parts and turn into water droplets.

A typical dangerous scenario is having the camera in a nice cool air conditioned car or building and then taking the camera out of the car/building to shoot on a warm day.  As the warm air hits the slightly colder camera parts moisture will form, both on the outside and the inside of the cameras body.

Moisture on the outside of the camera is normally obvious. It also tends to dry off quite quickly, but moisture inside the camera can’t be seen, you have no way of knowing whether it’s there or not. If you only use the camera for a short period the moisture won’t dry out and once the fans shut down the cameras interior is no longer ventilated and the moisture stays trapped inside.

Another damaging scenario is a camera that’s been splashed with water, maybe you got caught in an unexpected rain shower. Water will find it’s way into the smallest of holes and gaps through capillary action. A teeny, tiny droplet of water inside the camera will stay there once it gets inside. Get the camera wet a couple of times and that moisture can start to build up and it really doesn’t take a lot to do some serious damage. Many of the components in modern cameras are the size of pin heads. Rain water, sea water etc contain chemicals that can react with the materials used in a cameras construction, especially if electricity is passing through the components or the water and before you know it the camera stops working due to corrosion from water ingress.

Storing you delicate electronics inside a nice waterproof flight case such as a Pelicase (or any other similar brand) might seem like a good idea as these cases are waterproof. But a case that won’t let water in also won’t let water and moisture out. Put a camera that is damp inside a wateproof case and it will stay damp. It will never dry out.  All that moisture is gong to slowly start eating away at the metals used in a lightweight camera body and some of the delicate electronic components. Over time this gets worse and worse until eventually the camera stops working.

So What Should You Do?

Try to avoid getting the camera wet. Always use a rain cover if you are using a camera in the rain, near the sea or in misty, foggy weather. Just because you can’t see water flowing off your camera it doesn’t mean it’s safe. Try to avoid taking a cold camera from inside an air conditioned office or car into a warmer environment. If you need to do this a lot consider putting the camera in a waterproof bag ( a bin bag will do) before taking the camera into the warmer environment. Then allow the camera to warm up in the bag before you start to use it. If driving around in a car from location to location consider using less air conditioning so the car isn’t so cold inside.

Don’t store or put away a damp camera. Always, always throughly dry out any camera before putting it away. Consider warming it up and drying it with a hairdryer on a gentle/low heat setting (never let the camera get too hot to handle). Blow warm dry air gently into any vents to ensure the warm air circulates inside to remove any internal moisture. Leave the camera overnight in a warm, dry place with any flaps or covers open to allow it to dry out throughly.

If you know you camera is wet then turn it off. Remove the battery and leave it to dry out in a warm place for 24 hours. If it got really wet consider taking it to a dealer or engineer to have it opened up to make sure it’s dry inside before adding any power.

If you store your kit in waterproof cases, leave the lids open to allow air to circulate and prevent moisture building up inside the cases. Use Silica Gel sachets inside the cases to absorb any unwanted moisture.

If you live or work in a warm humid part of the world it’s tough. When I go storm chasing going from inside the car to outside in the warm to shoot is not healthy for the camera. So at the end of each day take extra care to make sure the camera is dry. Not just any obvious moisture on the outside but dry on the inside. So this normally means warming it up a little (not hot, just warm). Again a hair drier is useful or leave the camera powered up for a couple of hours in an air conditioned room (good quality aircon should mean the air in the room is dry). I keep silica gel sachets in my camera bags to help absorb any surplus moisture. Silica gel sachets should be baked in an oven periodically to dry them out and refresh them.

Fogged Up Lens?

Another symptom of unwanted moisture is a fogged up lens. If the lens is fogged up then there will almost certainly be moisture elsewhere. In the case of a fogged up lens one thing that sometimes helps (other than a hairdryer) is to zoom in and out a lot if it’s a zoom or change the focus a lot. Moving the lens elements backwards and forwards inside the lens helps to circulate air inside the lens and can speed up the time it takes to dry out.

SD Cards – how long do they last?

This came up on facebook the other day, how long do SD cards last?

First of all – I have found SD cards to be pretty reliable overall. Not as reliable as SxS cards or XQD cards, but pretty good generally. The physical construction of SD cards has let me down a few times, the little plastic fins between the contacts breaking off.  I’ve had a couple of cards that have just died, but I didn’t loose any content as the camera wouldn’t let me record to them. Plus I have also had SD cards that have given me a lot of trouble getting content and files off them. But compared to tape, I’ve had far fewer problems with solid state media.

But something that I don’t think most people realise is that a  lot of solid state media ages the more you use it. In effect it wears out.

There are a couple of different types of memory cell that can be used in solid state media. High end professional media will often use single level memory cells that are either on or off. These cells can only store a single value, but they tend to be fast and extremely reliable due to their simplicity. But you need a lot of them in a big memory card.  The other type of cell found in most lower cost media is a multi-level cell. Each multi-level cell stores a voltage and the level of the voltage in that cell represents many different values. As a result each cell can store more than one single value. The memory cells are insulated to prevent the voltage charge leaking away. However each time you write to the cell the insulation can be eroded. Over time this can result in the cell becoming leaky and this allows the voltage in the cell to change slightly resulting in a change to the data that it holds. This can lead to data corruption.

So multi level cards that get used a lot, may develop leaky cells. But if the card is read reasonably soon after it was written to (days, weeks, a month perhaps) then it is unlikely that the user will experience any problems. The cards include circuitry designed to detect problem cells and then avoid them. But over time the card can reach a point where it no longer has enough memory to keep mapping out damaged cells, or the cells loose there charge quickly and as a result the data becomes corrupt.

Raspberry Pi computers that use SD cards as memory can kill SD cards in a matter of days because of the extremely high number of times that the card may be written to.

With a video camera it will depend on how often you use the cards. If you only have one or 2 cards and you shoot a lot I would recommend replacing the cards yearly. If you have lots of cards either use one or two and replace them regularly or try to cycle through all the cards you have to extend their life and avoid any one card from excessive use which might make it less reliable than the rest.

One thing regular SD cards are not good for is long term storage (more than a year and never more than 5 years) as the charge in the cells will leak away over time. There are special write once SD cards designed for archival purposes where each cell is permanently fused to either On or Off.  Most standard SD cards, no matter how many times they have been used won’t hold data reliably beyond 5 years.

What does ISO mean with todays cameras?

What is EXPOSURE?

Before diving into ISO, I think it’s first important to understand what exposure is. Exposure is the amount of light you put on to a sensor or film stock. Exposure is NOT brightness, brightness is – brightness. I can take an image in to post production and make it brighter or darker, but this doesn’t change how the image was exposed. Exposure is very specifically – how much light is allowed to hit the sensor or film stock and this is usually controlled by the shutter speed, aperture as well as perhaps ND filters.

What is ISO?

Once upon a time the meaning of ISO was quite clear. It was a standardised sensitivity rating for the film stock you were using. If you wanted more sensitivity, you used film with a higher ISO rating. But today the meaning of ISO is less clear. And lets not forget, we can’t swap our sensors out for more or less sensitive ones. So what does ISO mean given that we can’t actually change the sensor?

ISO is short for International Standards Organisation. And they specify many, many different standards for many different things. For example ISO 3166 is for telephone country codes, ISO 50001 is for energy management.

But in our world of film and TV there are two main ISO standards that we have blended into one and we just call it “ISO”.

ISO 5800:2001 is the system used to determine the sensitivity of color negative film found by plotting the density of the film against exposure to light.

ISO 12232:2006 specifies the method for assigning and reporting ISO speed ratings, ISO speed latitude ratings, standard output sensitivity values, and recommended exposure index values, for electronic cameras.

Note a key difference:

ISO 5800 is the measurement of the actual sensitivity to light of film.

ISO 12232 is a standardised way to report the speed rating, ie: it is not actually a direct sensitivity measurement.

So, from the above we can deduce that with film ISO is an actual sensitivity measurement. With an electronic camera it is a speed rating, not a measurement of the sensitivity, a rating.

Different Approaches and REI.

Within the digital camera ISO rating system there are 5 different standards that a camera manufacturer can use when obtaining the ISO rating of a camera. The most commonly used method is the Recommended Exposure Index (REI) method, which allows the manufacturer to specify a camera model’s base ISO arbitrarily, based on what the manufacturer believes produces a satisfactory image. So it’s not actually a measure of the cameras sensitivity, but a rating that if entered into a standard external light meter and the shutter and aperture values from the light meter used to set the exposure will result in satisfactory looking image.
This is very different to a sensitivity measurement and variations in opinion as to what is “a satisfactory image” will vary from person to person, manufacturer to manufacturer. For example – how much noise is considered acceptable? I know a lot of people with very different opinions on this! So, there is a lot of scope for movement as to how an electronic camera might be rated and we see this in the real world where two cameras both rated at the same ISO may have very different noise levels when exposed “correctly”.

You Can’t Change the Silicon!

As you cannot change the sensor in a digital camera, you cannot change the cameras efficiency at converting light into electrons which is largely determined by the materials used and the physical construction of the sensor. So, you cannot change the actual sensitivity of the camera to light. But we have all seen how the ISO number of most digital cameras can normally be increased (and sometimes lowered) from the base ISO number.

Higher and Lower ISO values.

Raising and lowering the ISO rating in an electronic camera is normally done by adjusting the amplification of the signal coming from the sensor, typically referred to as “gain” in the camera. It’s not actually a physical change in the cameras sensitivity to light. It is more like turning up the volume on an analog radio to make the music louder. Dual ISO cameras that claim not to add gain when switching between ISO’s typically do this by an adjustment at the sensors pixel level and this is closer to an actual sensitivity change. But generally this only gives two levels, not the multitude of ISO values offed by most cameras. While it is true that Dual ISO is different to a gain shift, it does typically alter the noise levels with the higher base ISO being slightly more noisy than the lower. With a true dual ISO sensor does do is produce the same dynamic range at both ISO’s.

Noise and Signal To Noise Ratio.

Most of the noise in the pictures we shoot comes from the sensor and sensor readout circuits and this noise level coming from the sensor is largely unchanged no matter what you do.

So, the biggest influence on the signal to noise ratio or SNR is the amount of light you put on the sensor because more light = more signal. The noise remains but with more light the signal is bigger so you get a better signal to noise ratio, up to the point where the sensor clips at which point adding more light makes no further difference.

But what about low light?

To obtain a brighter image when there the light levels are low and the picture coming from the sensor looks dark the signal coming from the sensor can be boosted or amplified (gain is added) by increasing the cameras ISO value. This extra signal amplification makes both the desirable signal bigger but at the same time as the noise cannot be separated form the image the noise also gets bigger by the same amount. If we make the desirable picture 2 times brighter we also make the noise 2 x bigger/brighter. As a result the picture will be brighter but the noise will appear greater than an exposure where we had enough light to get the brightness we want and didn’t need to add gain or raise the ISO.

More gain = less dynamic range.

The signal to noise ratio deteriorates because the added amplification means the recording will clip more readily. Something that was right at the recordings clip point without adding gain may will end up above the clip point by adding gain. As a result the highlight range you can record reduces while at the same time the noise gets bigger. But the optimum exposure is now achieved with less light so the equivalent ISO number is increased. If you were using a light meter you would increase the ISO setting on the light meter to get the correct exposure.

But the camera isn’t getting more sensitive, it’s just that the optimum amount of light for the “best” or “correct” exposure is reduced due to the added amplification.

So, with an electronic camera, ISO is a rating that will give you the correct recording brightness for the amount of light and the amount of gain that you have. This is different to sensitivity. Obviously the two are related, but they are not quite the same thing.

ISO in an electronic camera is not a sensitivity value, it is an exposure rating.

Getting rid of noise:

To combat the inevitable increase in the visibility of noise and the degraded signal to noise ratio that comes from adding gain/amplification, most modern cameras use electronic noise reduction which is applied more and more aggressively as you increase the gain. At low levels this goes largely un-noticed. But as you start to add more gain there will often be more noise reduction and this will start to degrade the image. It may become softer, it may become smeary. You may start to see banding, ghosting or other artefacts. Higher noise levels are also problematic for modern high compression codecs, so even if the camera doesn’t add extra noise reduction at high gain levels it is likely that the codec will do more noise reduction in an attempt to keep the recording bit rate under control.

Often as you increase the gain you may only see a very small increase in noise as the noise reduction does a very good job of hiding the noise. But for every bit of noise thats reduced there will be another artefact replacing it.

Technically the signal to noise ratio can be improved by the use of noise reduction, but this typically comes at a price and NR can be very problematic if you later want to grade or adjust the footage as often you won’t see the artefacts until after the corrections or adjustments have been made. So be very careful when adding gain. It’s never good to have extra gain.

So what does all of this mean?

The majority of the video cameras we use today are something known as ISO invariant. This mean that the actual sensitivity of the camera doesn’t actually change, even though the camera may offer you a wide range of ISO values. Instead we are adding gain to get a brighter picture, but extra gain degrades the signal to noise ratio and limits the dynamic range.

As well as adding gain in camera we can also add gain in post production. And if the quality of the recording codec is high enough there is almost no difference between adding the gain in post production compared to adding the gain in camera. If you don’t add gain in the camera then you don’t reduce the cameras dynamic range. By moving the gain addition to post production you can retain the cameras full dynamic range and overall the end result won’t be significantly different. This is why most Log cameras use some sort of Exposure Index system that locks the camera to it’s base sensitivity as this is where the camera will exhibit the greatest useable dynamic range.

What about using Picture Profiles of different Gamma Curves?

Different gamma curves have different gain levels. So, very often you will see a camera at it’s base sensitivity (ie: no added gain) give you different ISO values depending on the gamma curve you have chosen. Again – this doesn’t meant the sensitivity of the camera is different for each gamma curve. What it actually means is that the optimum exposure (exposure = amount of light you put on the sensor) is a bit different for each gamma curve.  For example when shooting S-Log3 the sensor is exposed lower than it is with normal gammas. This darker S-Log3 exposure leaves more room for an extended highlight range. The flip side to this is that when the camera is set at the correct, no extra gain added base ISO’s “correctly” exposed S-Log3 will be noisier than correctly exposed Rec-709 or S-Cinetone, but the S-Log3 will have a greater highlight range. If you were to expose the S-Log3 and the S-Cinetone using the same aperture and shutter speed the noise would be the same.

Picture Profiles for Low Light.

A question that gets asked a lot is: What’s the best picture profile or gamma for low light?

Well,  if you have followed all of the above then you will hopefully understand that the gamma or picture profile makes no difference to the actual sensitivity of the camera.  So in reality there is very little difference between any profile or gamma curve in terms of how the camera will perform in low light. Remember: it’s always the same sensor with the same noise and same sensitivity to light no matter what other settings you have chosen.

There might be some differences in the amount of noise reduction applied in different profiles and that might make a small difference. Many of Sony cameras allow you to adjust this between off/low/mid/high. But even if you can’t change this in camera, adding a bit of extra NR in post is a common practice these days.  Really, it’s a case of choosing the profile or gamma that gives you the image you want, S-Log3 if you intend to grade, perhaps S-Cinetone if you don’t. If you bring the S-Cinetone ISO value up to match the S-Log3 ISO value, the noise in the final image from both will be more or less the same.

Using what data you have.

Perhaps the only small consideration is that under exposed S-Log3 only uses a very small part of the cameras full recording range. You won’t be making use of the full recording data range. Because of this it might be hard to grade it without the image starting to look coarse or grainy.  Because of the smaller dynamic range, similarly exposed (same aperture, same shutter speed) S-Cinetone or Rec-709 will use more of the data range and might not look quite as coarse as a result. This difference is very small, but it should be considered if you are trying to squeeze something out of an extremely under exposed situation.

Thoughts on: FS7 v EVA1.

The PXW-FS7, Sony best selling pro video camera.

I don’t like comparing two models directly and coming out with a one is better than the other conclusion. And I don’t want this to sound like a Sony fanboy put-down of the Panasonic EVA1. But I’ve had a lot of people ask me whether they should buy an FS7 or wait for the EVA1.

First of all: I have a good relationship with Sony. I like Sony cameras, I’ve been using them for all of my career and they have served me very well, so yes, I am probably biased.

Second: I haven’t shot with an EVA1, I have only seen highly compressed online clips and read the spec sheets, so I don’t really know how it performs. Very few people do.

Third: We are at the limits of what can be extracted from a silicon based sensor. The underlying technology is the same whether you are Arri, Panasonic or Sony and there is a limit to the efficiency of silicon at converting light into electrons, dynamic range, noise etc. So really we won’t see any one camera appear on the market that is massively different to any other with a similar sized sensor, especially at similar price points.

The FS7 is the most successful pro video camera Sony have ever produced by a big margin. There are thousands of FS7’s out in the field being used day-in, day-out to produce all kinds of TV and video productions. It is the industry standard camera for most large sensor TV and video productions. Most TV producers have heard of it, many specify it. I have even seen producers offered Red’s, F55’s or Alexa’s for the same rate as an FS7 but the producers insisted on the FS7 because it’s what they know, it’s what they are comfortable with. They know exactly what they are getting and how to handle the material.

The FS7 is an incredibly versatile camera. It can shoot HD, UHD and 4K. It can record using XAVC and the XDCAM HD codec which is ingrained in television broadcasting world wide due to its low computing power requirements.  At the same time it can (via an adapter) output raw for high end film style productions. It can shoot at up to 180fps in HD for slow motion as well as 4K 10bit 422 at 60fps for normal speed or off-speed applications. It’s approved by Netflix for 4K production. There isn’t much it can’t do. It isn’t perfect, no camera is, but it represents amazing bang for the bucks and it can make very pretty pictures.

It uses professional grade recording media for reliability and speed. You can off-load your footage from the XQD cards incredibly quickly. The cards themselves are robust and reliable, there is no need to resort to parallel recording for safety. It just works as it should.

THE LENS MOUNT

If you have an FS7-II then you also have the wonderful variable ND filter and a locking E-Mount. The E-Mount is one of the biggest benefits of the FS7 over it’s competitors. Thanks to E-Mount you can use just about any lens you want as well as adapters such as speedboosters. Even the new high end Venice camera features an E-Mount because producers and directors want flexibility. Need to use the camera to shoot news? Stick on a B4 ENG zoom via an adapter. Want to shoot a movie? Use a Fujinon MK or use a true Cine lens with a PL adapter. On a budget, throw on some old Canon FD lenses or Canon EF lenses just by swapping the adapter.

Whatever any other manufacturer (or even Sony themselves) produces, none of these things will change overnight. The camera will continue to perform just as well tomorrow, next week, next month, next year as it does today. Even if a substantially better camera comes out today it will take at least 6 months for that camera to become widely accepted and longer still for it to become an industry standard like the FS7. From an image quality point of view it’s unlikely that there will be a significantly better camera at this price point any time soon because of the limits of what can be done with current sensor technology. In terms of what the camera can do, what more would you like from the FS7? It’s already feature packed.

If we take a look at what Sony have done with the new high end Venice camera you will see that if the sensor is used as a super 35mm sensor (like the FS7) it has the same pixel count as the FS7. Both are 4K at super 35mm. To get a higher resolution with Venice you have to take advantage of the larger full frame capabilities of the Venice sensor, this then gives you 6K’s worth of pixels. Why did Sony do this? why not just cram more pixels onto a super 35mm sensor?

Pixel size is very important. It’s part of the reason why cameras with bigger sensors tend to produce better pictures. A bigger pixel can gather more photons of light, making it naturally more sensitive. A bigger pixel can also hold a larger electrical signal before it overflows, this allows for a bigger dynamic range. The color filters can also be bigger allowing for higher quality filters for better color accuracy and less pixel to pixel cross-talk. For Venice, Sony chose to keep the pixels as big as possible to get the best possible image quality with low noise and high dynamic range. 4K’s worth of pixels is plenty for most productions. It’s worth remembering that the Arri cameras are only 2.8K and most people seem happy with their image quality.

The Panasonic EVA1 has more pixels than the FS7. This gives Panasonic an easy sales pitch advantage. The easy sell is the “big is better” sell.  More pixels thus higher resolution is an easy sell, bigger numbers sound better. But cramming more pixels on to the same size of sensor means the pixels must be much smaller. How will the fact that the pixels are significantly smaller effect the image quality? Only time will tell. I’m sure the EVA1 will be a good camera but I suspect that Panasonic will be trading off a bit of sensitivity and dynamic range to gain a small resolution advantage, thank most people will really struggle to see. It’s a game of swings and roundabouts that every manufacturer plays.

The FS7 is a well respected, very capable camera. It’s tried and tested. It has an incredibly flexible lens mount. One of the Canon C300’s restrictions and perhaps part of the reason why it sin’t as popular as the FS7 is the lens mount and the EVA1 shares those same restrictions. With no variable ND filter, when using most Canon lenses the aperture will go in steps making smooth mid shot exposure changes impossible. What do you do if you want to shoot in extremely low light? there’s no speed booster option. What do you do if you want to use a PL Mount cinema lens? Rent an FS7 perhaps?

The EVA1’s planned recording rates max out at 400Mb/s (probably an SD card limitation, and I have big questions over the reliability of SD cards when pushed that hard). The FS7 reaches 600Mb/s when recording 4K 60p.

The FS7 can record 4 channels of audio and has the great MI-Shoe system that allows you to power your radio mic receiver from the camera batteries. I love this system. I have the dual channel reciever so I can use 2 radio mics at once with ease. Plus I can also record a stereo atmos track at the same time.

So, all in all, the FS7 still has a great feature set and it produces a great image. The FS7 viewfinder is great for those of us that can’t focus on an LCD screen just inches from our faces. The EVA1 is not suddenly going to oust the FS7 from it’s top spot. If I was looking for a new camera as a freelance operator right now the FS7 would still be my first choice. I want to be able to work today so I need a camera that will be asked for by producers today and for the foreseeable future. Panasonic are a bit late to this particular party. To make a big impact when you are late you need to have something very special (or very cheap) and while the EVA1 will probably be a perfectly good camera, I do’t think it is going to topple the FS7 from it’s current position as the go-to large sensor workhorse.

Norway and the Northern Lights 2018.

After a test run starting and finishing in Alta last year I have decided to run the trips from Alta again next year. The hotel is nicer and the itinerary more relaxed. Starting and finishing at Alta gives us more time at the cabins.

2017/2018 Northern Lights Expeditions to Norway, travelling by road and snow scooter, staying in mountain cabins. Including food for 4 days, ice fishing, snow scooter use and optional photo/video tuition. You must book your own flights to Alta, Norway.

2018 Tour 1: Arctic Dawn. On this tour we will see the very first sunrise of the year. The moon will be absent during the night, so best suited for shooting and viewing faint Aurora.  Arrive Friday 12th January 2018, depart Thursday 18th January 2018.   £1,350 per person. Max 8 people. (cost of flights NOT included).  You must arrange your own transport to and from Alta, Norway.

2018 Tour 2: Moonrise Tour. On this tour we will have a rising moon (after new moon) The moon will start at 18% illumination and increase to 53% illumination over the course of the tour. This will provide interesting possibilities for moonlit landscapes, but if the Aurora is very, very faint it will be harder to see. The days will be longer during this tour than the first tour. Arrive Thursday 18th of January 2018, Depart Wednesday 24th of January 2018. £1350 per person max 8 guests.

These really are amazing adventures. Not just a chance to see the Northern Lights but also a chance to experience some of the most beautiful scenery on the planet. Full details can be found by clicking here.

Sony Venice at IBC 2017.

Sony Venice Digital Cinema Camera.

As well as several Sony Venice cameras on the Sony booth, Sony will be holding a special IBC screening of the Venice demo films projected in HDR using Dolby Vision in the main big screen auditorium of the RAI at 2.30pm on Friday. Ed Wild the DP of the UK film will also be there to answer any questions. If you are interested in Sony Venice this should not be missed.

Why are Sony’s ISO’s different between standard gammas and log?

With Sony’s log capable cameras (and most other manufacturers) when you switch between the standard gamma curves and log gamma there is a change in the cameras ISO rating. For example the FS7 is rated at 800 ISO in rec709 but rated at 2000 ISO in log. Why does this change occur and how does it effect the pictures you shoot?

As 709 etc has a limited DR (between around 6 and 10 stops depending on the knee settings) while the sensor itself has a 14 stop range, you only need to take a small part of the sensors full range to produce that smaller range 709 or hypergamma image. That gives the camera manufacturer some freedom to pick the sweetest part of the sensors range. his also gives some leeway as to where you place the base ISO.

I suspect Sony chose 800 ISO for the FS7 and F5 etc as that’s the sensors sweet spot, I certainly don’t think it was an accidental choice.

What is ISO on an electronic camera? ISO is the equivalent sensitivity rating. It isn’t a measure of the cameras actual sensitivity, it is the ISO rating you need to enter into a light meter if you were using an external light meter to get the correct exposure settings. It is the equivalent sensitivity. Remember we can’t change the sensor in these cameras so we can’t actually change the cameras real sensitivity, all we can do is use different amounts of gain or signal amplification to make the pictures brighter or darker.

When you go switch the camera to log you have no choice other than to take everything the sensor offers. It’s a 14 stop sensor and if you want to record 14 stops, then you have to take 100% of the sensors output. The camera manufacturer then chooses what they believe is the best exposure mid point point where they feel there is an acceptable compromise between noise, highlight and lowlight response. From that the manufacture will get an ISO equivalent exposure rating.

If you have an F5, FS7 or other Sony log camera, look at what happens when you switch from rec709 to S-Log2 but you keep your exposure constant.

Middle grey stays more or less where it is, the highlights come down. White will drop from 90% to around 73%. But the ISO rating given by the camera increases from 800ISO to 2000ISO. This increased ISO number implies that the sensor became more sensitive – This is not the case and a little missleading. If you set the camera up to display gain in dB and switch between rec709 (std gamma) and S-Log the camera stays at 0dB, this should be telling you that there is no change to the cameras gain, no change to it’s sensitivity. Yet the ISO rating changes – why?

The only reason the ISO number increases is to force us to underexpose the sensor by 1.3 stops (relative to standard gammas such as rec709 and almost every other gamma) so we can squeeze a bit more out of the highlights. If you were using an external light meter to set your exposure if you change the ISO setting on the light meter from 800 ISO to 2000 ISO  the light meter will tell you to close the aperture by 1.3 stops. So that’s what we do on the camera, we close the aperture down a bit to gain some extra highlight range.

But all this comes at the expense of the shadows and mid range. Because you are putting less light on the sensor if you use 2000 ISO as your base setting the shadows and mids are now not as good as they would be  in 709 or with the other standard gammas.

This is part of the reason why I recommend that you shoot with log between 1 and 2 stops brighter than the base levels given by Sony. If you shoot 1 stop brighter that is the equivalent to shooting at 1000 ISO and this is closer to the 800 ISO that Sony rate the camera at in standard gamma.  Shooting that bit brighter gives you a much better mid range that grades much better.

 

Sony Venice. Full Frame Digital Cinema Camera.

So here it finally is. Sony’s latest digital cinema camera and finally it has a name rather than a number and it’s called Venice.

Sony Venice Digital Cinema Camera.

I was lucky enough to be involved with Venice during the filming of the UK promo film, so I have had a little bit of a chance to play with one, seen it in action in the hands of an experienced DP (Ed Wild B.S.C.) and I have copies of the footage from it (I did the BTS film). So I have a pretty good idea of what we are dealing with…… and it’s good, it’s very, very good.

On-set with Sony’s Venice.

For a long time I have been saying that what we need is better pixels, not more pixels and that’s precisely what Sony have delivered in Venice. The newly developed sensor is a full frame sensor, 36mm x 24mm with 6K’s worth of horizontal pixels. This means that if you use the camera as a super 35mm camera you have 4K (and for the demo films the pre production cameras used only worked at 4K, the equivalent of 35mm 4 perf. 6K will come a little later). Venice will be able to do a huge range of resolutions and aspect ratios including Anamorphic.

Why only 6K? Well it’s down to pixel size. Bigger pixels can capture more light and they can also store more electrons before they overload. This means you get a bigger dynamic range than would typically be possible with smaller pixels. The extra light capturing capability can be used in one of 2 ways, to increase sensitivity or to decrease noise. It appears that the engineers behind Venice went for the latter, lower noise.

There’s a Sony Venice digital cinema camera buried under there somewhere.

A lot of research was done for this camera. Engineers from Japan met with many ASC and BSC cinematographers. They talked to post houses and colourists to find out what was really needed. I know that Claudio Miranda A.S.C. played an important part in the development process, he also shot the US demo film. The end result is a pretty sensitive camera (500 ISO) with very low noise and over 15 stops of dynamic range. Yes – that’s right over 15 stops without resorting to double exposures or any other tricks!!

Left side of the Sony Venice cinema camera.

While the sensor isn’t a global shutter sensor it does have an extremely fast readout rate. This extra fast readout means that jello and other rolling shutter artefacts are minimised to the point where it behaves much more like a global shutter sensor.  Generally speaking, the extra memory circuits needed to get a global shutter either add noise, reduce sensitivity or reduce dynamic range. So it’s not a huge surprise to see the fast read out approach. There was quite a bit of filming done with a rather lovely Lamborghini Uraco, both hand held inside the car and mounted on the front of the car. Looking at the rushes there is no sign of any noticeable rolling shutter artefacts, even the trees flashing past in the background are still nice and vertical.

Viewfinder overlays are now outside of the visible image area.

A lot of the car shooting took place at dusk and an interesting thing that came out of the UK demo reel shoot was how well it performed in low light. The 500 ISO rating is deceptive, because the camera produces so little noise you can rate the camera at a higher ISO and still get good results. Most current cinema cameras don’t produce the best results unless you rate them lower than their base ISO’s. Venice is different, the base ISO is very low noise and very high dynamic range. There appears to be little need to rate it lower for even less noise, although you could if you wish. I asked Ed Wild about this and he was really pleased with Venice’s ISO rating commenting that he often had to rate cameras from other manufacturers lower than the base ISO while he felt Venice at 500 ISO worked really well and that he would even consider rating it higher if needed.

Having a low base ISO means there is less need to use large amounts of ND on outdoor shoots. But talking of ND filters one of the great features of Venice is an 8 stage, behind the lens glass ND filter system. This allows you to choose just the right amount of ND for the light levels you have with no loss of quality. During the pre-shoot test and prep day at Pinewood each stage of the ND was carefully tested for colour shifts and accuracy, no problems were found.

Sony Venice has 2 internal ND filter wheels giving 8 ND levels.

The lens mount on a Venice camera can be changed. It’s not a quick release mount as on the F55 or F5 cameras. It’s normally a PL mount. But the PL mount can be removed and the camera changed to a Sony E-Mount. 6 bolts remove the PL mount and a locking E mount similar to the one on the FS7 II is on the cameras body. This opens up the possibility of using a huge range of lenses, practically anything in fact as it’s easy to adapt from E-Mount to other mounts such as Canon EF for example. For the UK demo reel XTAL Anamorphics from MovieTec were used. Ultra Primes were used for the US promo film.

VENICE A Truly Modular Camera.

Not only can the lens mount be changed but the entire front part of the camera can be changed by removing just 4 screws. Venice is built as a modular camera and the front part of the camera that contains the sensor and ND filters is a removable module (no need for lab conditions or clean rooms to remove the module). This means that in the future Sony could release new sensor options for Venice. Maybe a higher resolution sensor, a monochrome sensor or a high speed sensor. Removing the front sensor module from the camera allows easy access to the cameras internal near silent fan so that it can be cleaned or replaced should that become necessary. All of the cameras electronics are in sealed compartments for dust and moisture protection and rubber seals are installed around any openings such as the SxS card access door. In addition if you do use the AXS-R7 recorder to record Raw/X-OCN this too is weather sealed.

There are 2 SXS card slots on the camera body.

Venice records to SxS cards and with the AXS-R7 attached to AXS cards. You can record XAVC, ProRes HD, ProRes Proxy, as well as Raw/X-OCN. The XAVC recording option allows you to record direct to compact but high quality ready to go files or to record lower resolution proxy files.  X-OCN gives a 16 bit linear workflow with raw type performance but without massive files. There is very little difference between X-OCN and Sony 16 bit linear raw and different versions of X-OCN work at different bit rates so you can pick and choose the right balance of image quality against file size for each project.

Plenty of output options on the Sony Venice camera including 4 x HDSDI/4K SDI and an additional dedicated monitor output.

For Venice Sony have developed new colour science that is designed to emulate film. Looking at the rushes from the camera it really looked nice without any grading. The images contain lots of lush colours. You could see amazing subtle tonal information in the leaves and trees in the shots. Skin tone highlights roll of in a particularly pleasing way.

One of the biggest criticisms of the PMW-F55 and F5 cameras when they were launched was that they were too complex to drive. The F55 menu system is very large containing many, many pages of settings and adjustments. This is a cinema camera without a lot of the fancy modes that cameras like the F5 or F55 have so the menus are simpler straight away. A lot of time was spent trialling different menu structures to determine the easiest and friendliest structure. At the press event during the hands on session most people found it quite easy to navigate around the menus. But really the way the side panel and the quick menu is set up means you won’t need to dive into the main menu very often.

Sony Venice right side.

The camera body is a bit bigger than an F55/F5 and a lot smaller and lighter than an F65. On the right side of the camera there is the main LCD display, which is very similar to the one on the F55/F5 with 6 hot keys around it and a rotary menu dial. This is actually quite similar to the F55’s new Quick Menu system and easy to master.  All the key functions and setup options are just a couple of button presses away. This is the main display and where most of the cameras settings can be changed. It’s on the right side so the AC or DIT can get at it and see it easily. Pressing the user button turns 5 of the 6 buttons around the LCD into user assignable buttons (the 6th button is used to set the assignable functions).

The right side main LCD display and option buttons.

On the left side of the camera there is a small information display that shows the frame rate, shutter speed, ND, ISO and white balance.

The left side information display.

The white balance of the camera can be dialled in manually unlike the F55 you are no longer tied to 3 presets. You can now dial in the white balance you want down to 1 kelvin increments. Once you have set your white balance you can include your new custom setting in the preset list for quick recall at any time.

The camera can run off either 12V or 24V and it has an internal 24V inverter so that when using a 12V power source such as a V-Mount battery you still get 24V out of the industry standard 24V lemo connectors.

The Sony Venice PL mount is secured to the cameras body with 6 bolts. When removed there is a locking E-Mount.

Venice is a modular camera system with various upgrade options. The base camera comes as a 4K super 35mm camera. the 6K option, anamorphic options (6K full frame and 4K 35mm) and other options will be available as option licences. These licences can be purchased as weekly, monthly or permanent options depending on your needs.

What about the picture? I spent a couple of days looking at footage from this camera both in my own grading suite and at Sony’s Pinewood facility during the production of the BTS film. I also saw it projected at the press day and it looks good. One problem today is that there are so many very good and very capable cameras that it’s tough to really pinpoint things that make one stand out as better than another. What I have found to be very pleasing from Venice is the skin tones. Sony have introduced new colour science and colour management for Venice and I think it looks really good. Even before grading, just looking at the clips on a monitor with S-Log3 gamma the pictures have a wonderful rich look. It’s worth noting that the cameras used for both the US and EU launch films were hand made pre-production units and the engineers are still learning how to fully exploit the new sensors in these cameras. So we can only expect them to get better between now and when they become available to buy.

Will I be getting one? Probably not. This is a wonderful camera and I would love to own one, but Venice will be more expensive than the F55 and probably not the best investment for me at least. However I fully intend to get my grubby fingers on one as soon as possible to learn all of it’s in’s and out’s as I hope to use a Venice for some short films I have planned. This is a serious Alexa or Red alternative It has image quality to rival or better almost any other digital cinema camera, but that does come at a price, although it’s no more expensive than any other comparable camera.

The estimated price for the base camera is expected to be around €37,000. Full frame and anamorphic options will be payable options, with the full-frame option costing a approx €4,000 and the anamorphic costing a approx €6,000.  it should be available from around February 2018.