Tag Archives: gamma

PMW-F3 Picture Profiles. First Batch.

OK here we go. Here are some notes from testing my PMW-F3. First thing is… aliasing… a zone plate looks pretty bad with a fair amount of aliasing. I had heard rumours of this from others with pre-production units, but in the field I had not seen anything that would worry me. While the zone plate is not pretty, real world aliasing looks acceptable. I usually use brickwork and roof tiles to test for moire and these look clean on my F3. I think a fine patterned shirt could cause concern and I need to look into this further. I am surprised that there is not more about this on the web!

Excessive detail correction does increase the aliasing, however turning detail and aperture off does not reduce the aliasing significantly. Keep the detail level below -15 to avoid increasing the strength of the aliases. Above -15 the aliasing artefacts are more noticeable. Detail “Off” appears to be the same as Detail -25. Below -25 the image softens, below -45 very noticeably and there are some strange increases in aliasing below -50. For the moment I will be using detail at -17 or off.

The aperture setting can be used to add a little sharpness to the image to compensate for not using detail or a low detail setting. Aperture does not increase the appearance of the aliasing artefacts as strongly as the detail correction. I like the added crispness I can get with Aperture set to +30 combined with detail at -17. I would strongly recommend against using a raised aperture setting if you have detail higher than -15 as this will add sharpness to any detail corrected aliases and lead to twittering edges on horizontal and vertical lines.

Colours have that usual Sony look. Not bad and pretty natural looking, but for me a little on the green side. For a more natural 1:1 look I quite like these Matrix settings:
R-G +10, R-B +4, G-R 0, G-B +14, B-R +3, B-G -3, Std Matrix.

For a more Canon like look with Rec-709 Matrix I came up with these:
R-G -2, R-B +9, G-R -11, G-B +2, B-R -16, B-G -10, Std Matrix, level +14, Blk Gamma -20

For use with Cinegamma 1 I use the above with Matrix Level +25, Blk Gamma -36. Highlights are a little washy, but as with any Cinegamma the best results are obtained by grading in post production.

When should I use a Cinegamma or Hypergamma?

Cinegammas are designed to be graded. The shape of the curve with steadily increasing compression from around 65-70% upwards tends to lead to a flat looking image, but maximises the cameras latitude (although similar can be achieved with a standard gamma and careful knee setting). The beauty of the cinegammas is that the gentle onset of the highlight compression means that grading will be able to extract a more natural image from the highlights. Note than Cinegamma 2 is broadcast safe and has slightly reduced recording range than CG 1,3 and 4.

Standard gammas will give a more natural looking picture right up to the point where the knee kicks in. From there up the signal is heavily compressed, so trying to extract subtle textures from highlights in post is difficult. The issue with standard gammas and the knee is that the image is either heavily compressed or not, there’s no middle ground.

In a perfect world you would control your lighting (turning down the sun if necessary ;-o) so that you could use standard gamma 3 (ITU 709 standard HD gamma) with no knee. Everything would be linear and nothing blown out. This would equate to a roughly 7 stop range. This nice linear signal would grade very well and give you a fantastic result. Careful use of graduated filters or studio lighting might still allow you to do this, but the real world is rarely restricted to a 7 stop brightness range. So we must use the knee or Cinegamma to prevent our highlights from looking ugly.

If you are committed to a workflow that will include grading, then Cinegammas are best. If you use them be very careful with your exposure, you don’t want to overexpose, especially where faces are involved. getting the exposure just right with cinegammas is harder than with standard gammas. If anything err on the side of caution and come down 1/2 a stop.

If your workflow might not include grading then stick to the standard gammas. They are a little more tolerant of slight over exposure because skin and foliage won’t get compressed until it gets up to the 80% mark (depending on your knee setting). Plus the image looks nicer straight out of the camera as the cameras gamma should be a close match to the monitors gamma.

Understanding Gamma, Cinegamma, Hypergamma and S-Log


Standard Gamma Curve

The graph to the left shows and idealised, normal gamma curve for a video production chain. The main thing to observe is that the curve is in fact pretty close to a straight line (actual gamma curves are very gentle, slight curves). This is important as what that means is that when the filmed scene gets twice as bright the output shown on the display also appears twice as bright, so the image we see on the display looks natural and normal. This is the type of gamma curve that would often be referred to as a standard gamma and it is very much what you see is what you get. In reality there are small variations of these standard gamma curves designed to suit different television standards, but those slight variations only make a small difference to the final viewed image. Standard gammas are typically restricted to around a 7 stop exposure range. These days this limited range is not so much to do with the lattitude of the camera but by the inability of most monitors and TV display systems to accurately reproduce more than a 7 stop range and to ensure that all viewers whether they have 20 year old TV or an ultra modern display get a sensible looking picture. This means that we have a problem. Modern cameras can capture great brightness ranges, helping the video maker or cinematographer capture high contrast scenes, but simply taking a 12 stop scene and showing it on a 7 stop display isn’t going to work. This is where modified gamma curves come in to play.

Standard Gamma Curve and Cinegamma Curve

The second graph here shows a modified type of gamma curve. This is similar to the hypergamma or cinegamma curves found on many professional camcorders. What does the graph tell us? Well first of all we can see that the range of brightness or lattitude is greater as the curve extends out towards a range of 10 T stops compared to the 7 stops the standard gamma offers. Each additional stop is a doubling of lattitude. This means that a camera set up with this type of gamma curve can capture a far greater contrast range, but it’s not quite as simple as that.

Un-natural image response area

Un-natural response

Look at the area shaded red on the graph. This is the area where the cameras capture gamma curve deviates from the standard gamma curve used not just for image capture but also for image display. What this means is that the area of the image shaded in red will not look natural because where something in that part of the filmed scene gets 100% brighter it will only be displayed as getting 50% brighter for example. In practice what this means is that while you are capturing a greater brightness range you will also need to grade or correct this range somewhat in the post production process to make the image look natural. Generally scenes shot using hypergammas or cinegammas can look a little washed out or flat. Cinegammas and Hypergammas keep the important central exposure range nice an linear, so the region from black up to around 75% is much like a standard gamma curve, so faces, skin, flora and fauna tend to have a natural contrast range, it is only really highlights such as the sky that is getting compressed and we don’t tend to notice this much in the end picture. This is because our visual system is very good at discerning fine detail in shadow and mid tones but less accurate in highlights, so we tend not to find this high light compression objectionable.

S-Log Gamma Curve

S-Log Gamma Curve

Taking things a step further this  even more extreme gamma curve is similar to Sony’s S-Log gamma curve. As you can see this deviates greatly from the standard gamma curve. Now the entire linear output of the sensor is sampled using a logarithmic scale. This allows more of the data to be allocated to the shadows and midtones where the eye is most sensitive. The end result is a huge improvement in the recorded dynamic range (greater than 12 stops) combined with less data being used for highlights and more being used where it counts. However, the image when viewed on a standard monitor with no correction that looks very washed out, lacks contrast and generally looks incredibly flat and uninteresting.

S-Log Looks Flat and Washed Out

Red area indicates where image will not look natural with S-Log without LUT

In fact the uncorrected image is so flat and washed out that it can make judging the optimum exposure difficult and crews using S-Log will often use traditional light meters to set the exposure rather than a monitor or rely on zebras and known references such as grey cards. For on set monitoring with S-Log you need to apply a LUT (look Up Table) to the cameras output. A LUT is in effect a reverse gamma curve that cancels out the S-Log curve so that the image you see on the monitor is closer to a standard gamma image or your desired final pictures. The problem with this though is that the monitor is now no longer showing the full contrast range being captured and recorded so accurate exposure assessment can be tricky as you may want to bias your exposure range towards light or dark depending on how you will grade the final production. In addition because you absolutely must adjust the image in post production quite heavily to get an acceptable and pleasing image it is vital that the recording method is up to the job. Highly compressed 8 bit codecs are not good enough for S-Log. That’s why S-Log is normally recorded using 10 bit 4:4:4 with very low compression ratios. Any compression artefacts can become exaggerated when the image is manipulated and pushed and pulled in the grade to give a pleasing image. You could use 4:2:2 10 bit at a push, but the chroma sub sampling may lead to banding in highly saturated areas, really Hypergammas and Cinegammas are better suited to 4:2:2 and S-Log is best reserved for 4:4:4.

Shooting Snow and other bright scenes.

Well winter is upon us. The north of the UK is seeing some pretty heavy snow fall and it’s due to spread south through the week. I regularly make trips to Norway and Iceland in the winter to shoot the Northern Lights (email me if you want to come) so I am used to shooting in the snow. It can be very difficult. Not only do you have to deal with the cold but also difficult exposure.

First off it’s vital to protect your equipment and investment from the cold weather. A good camera cover is essential, I use Kata covers on my cameras. If you don’t have a proper cover at the very least use a bin liner or other bag to wrap up your camera. If you have a sewing machine you could always use some fleece or waterproof material to make your own cover. If snow is actually falling, it will end up on your lens and probably melt. Most regular lens cloths just smear any water around the lens, leaving you with a blurred image. I find that the best cloth to use in wet conditions is a chamois (shammy) leather. Normally available in car accessory shops these are soft, absorbent leather cloths. Buy a large one, cut it into a couple of smaller pieces, then give it a good wash and you have a couple of excellent lens cloths that will work when wet and won’t damage your lens.

Exposing for snow is tricky. You want it to look bright, but you don’t want to overexpose. If your camera has zebras set them to 95 to 100%. This way you will get a zebra pattern on the snow as it starts to over expose. You also want your snow to look white, so do a manual white balance using clean snow as your white. Don’t however do this at dawn or near sunset as this will remove the orange light normally found at the ends of the day. In these cases it is best to use preset white set to around 5,600k. Don’t use cinegammas or hypergammas with bright snow scenes. They are OK for dull or overcast days, provided you do some grading in post, but on bright days because large areas of your snow scene will be up over 70 to 80% exposure you will end up with a very flat looking image as your snow will be in the compressed part of the exposure curve. You may want to consider using a little bit of negative black gamma to put a bit more contrast into the image.

If the sun is shining, yes I know this may not happen often in the UK, but if it is then the overall brightness of your scene may be very high. Remember to try to avoid stopping down your lens with the iris too far. With 1/3? sensor cameras you should aim to stay more open than f5.6, with 1/2? more than f8 and 2/3? more than f11. You may need to use the cameras built in ND filters or external ND filters to achieve this. Perhaps even a variable ND like the Genus ND Fader. You need to do this to avoid diffraction limiting, which softens the image if the iris is stopped down too much and is particulary noticeable with HD camcorders.

Finally at the end of your day of shooting remember that your camera will be cold. If you take it in to a warm environment (car, house, office) condensation will form both on the outside and on the inside. This moisture can damage the delicate electronics in a camcorder so leave the camera turned off until it has warmed up and ensure it is completely dry before packing it away. This is particularly important if you store your camera in any kind of waterproof case as moisture may remain trapped inside the case leading to long term damage. It is a good idea to keep sachets of silica gel in your camera case to absorb any such moisture. In the arctic and very cold environments the condensation may freeze covering the camera in ice and making it un-useable. In these extreme situations sometimes it is better to leave the camera in the cold rather than repeatedly warming it up and cooling it down.

Have fun, don’t get too cold, oh…  and keep some chemical hand warmers handy to help stop the lens fogging and to keep your fingers from freezing.

S-Log or Hypergamma with the PMW-F3

The new Sony PMW-F3 can record using normal standard gammas and hypergammas, which compress highlights and increase the dynamic range to 460% and S-Log which is, as it’s name suggests an “S” shaped logarithmic gamma curve that compresses both highlights and lowlights giving upto 800% dynamic range. However the noise figures given by Sony are very different for S-Log and Hypergammas.

It will be interesting to see what the ramifications of the F3?s, 63db noise figure using standard gammas and hypergammas, vs the 57db nf using S-Log.

S-Log on the F3 will give you almost an extra stop of dynamic range but doubles the amount of noise. In most grading situations noise is the defining factor as to how far you can push the image in post. With normal gammas, at 57db the noise level is at the point where 10 bit recording brings little advantage as the noise is still around the minimum sample size. But S-Log is different as the distribution of data across the gamma curve is not linear, you must have 10bit recording for S-Log to work correctly. With the standard gammas at 63db there will be a definite advantage to recording 10bit.

The noise behaviour suggests that the true zero point noise level for the F3 is 57db, but that for “normal” use, due to the sensors very large dynamic range I suspect that Sony have chosen to reduced the gain by 6db, thus reducing both the noise and dynamic range. In effect the camera is operating with -6db gain switched in as default. However the sensor is sensitive enough to still give excellent low light performance despite the reduced gain and has more than enough dynamic range to still give the 11 stops that can be recorded with Hypergammas. This points to excellent low light performance as with +6db of gain switched in (with standard or hypergammas) your still going to have a 57db noise figure and at +9db gain it should have about the same amount of noise as an EX1 at 0db! Ah.. the delight of big pixels.

Brewing up a scene file: Black Gamma


In the posts above I looked at how the gamma curves effect the contrast range within the picture and highlight handling. I also noted that while I like the latitude (range) offered by using the Hypergammas that they produce a very flat looking picture. One of the adjustments that you can make to the Gamma curves is the Black Gamma. Adjusting the Black Gamma stretches or compresses the bottom part of the gamma curve, this makes the darker parts of the picture darker (negative setting) or brighter (positive setting). When setting the Black Gamma you will find 4 different ranges to choose from. Low, Low-Mid, Hi-Mid and High. These settings determine the range over which the black gamma works. Low only effects the darkest 10% of the image, L-Mid the bottom 20%(approx), H-Mid the lowest 30%(approx) and Hi the lower 35% (approx). So if you just want to make your deep shadows and blacks darker you would use Low. If you want to make the overall image more contrasty you would use H-Mid or Hi. I like to give my images a bit more impact so I often use H-Mid at -30. If the pictures are to be graded I would not use any negative black gamma.

Brewing up a Scene File: Gamma and Knee

Before anyone complains that I have missed stuff out or that some technical detail is not quite right, one of the things I’m trying to do here is simplify the hows and why’s to try and make it easier for the less technical people out there. Lets face it this is an art form, not a science (well actually a bit of both really).

So what is a gamma curve anyway? Well the good old fashioned cathode ray tube television was a very non-linear device. You put 1 unit of power in and get one unit of light out. You put 2 units in and get 1.5 units out, put 3 in and get 2 out… and so on. So in order to get a natural picture the output of the camera also has to be modified to compensate for this. This compensation is the gamma curve, an artificial modification of the output signal from the camera to make it match TV’s and monitors around the world. See Wikipedia for a fuller explaination:   http://en.wikipedia.org/wiki/Gamma_correction

So, all video cameras will have a gamma curve, whether you can adjust it or not is another matter. Certainly most pro level cameras allow you some form of gamma adjustment.

The PMW-350 has 6 standard gamma curves, these are all pretty similar, they have to be otherwise the pictures wouldn’t look right, but small changes in the curve effect the relationship between dark and bright parts of the pictures. Todays modern cameras have a far greater dynamic range (range of dark to bright) than older cameras. This means that the full dynamic range of the sensor no longer fits within the gamma curves used for TV’s and monitors. In broadcast television any signal that goes over 100% gets clipped off and is discarded, so the cameras entire brightness range has to be squeezed into 0 to 100%. The PMW-350 sensors are capable of far more than this (at least 600%) so what can you do?

The older and simpler solution is called the “Knee”. The knee works because in most cases the brightest parts of a scene contains little detail and is generally ignored by our brains. We humans tend to focus on mid-tone faces, animals and plants rather than the bright sky. Because of this you can compress the highlights (bright) parts of the picture quite heavily without it looking hugely un-natural (most of the time at least). What the knee does is takes a standard gamma curve and up near it’s top, bends it over. This has the effect of compressing the brighter parts of the image, squashing a broad range of highlights (clouds for example) into a narrow range of brightness. While this works fairly well, it does tend to look rather “electronic” as the picture is either natural (below the knee) or compressed (above the knee).

The answer to this electronic video look is to replace the hard knee with gentle bend to the gamma curve. This bend starts some way down the gamma curve, very gentle at first but getting harder and harder as you go up the gamma curve. This has the effect of compressing the image gently at first with the compression getting stronger and stronger as you go up the curve. This looks a lot more natural than a hard knee and is far closer to the way film handles highlights. The downside is that because the compression starts earlier a wider tonal range is compressed. This makes the pictures look flat and uninteresting. You have to watch exposure on faces as these can creep into the compressed part of the curve. The plus point is that it’s possible to squeeze large amounts of latitude into the 100% video range. This video can then be worked on in post production by the editor or colorist who can pull out the tonal range that best suits the production.

These compressed gamma curves are given different names on different products. Panasonic call them “Film Rec”, on the EX1 they are “Cinegammas” on the PMW-350 they are “Hypergammas”. The 350 has four Hypergammas. The first is 3250. this takes a brightness range the equivalent to 325% and compresses it down to 100%. HG 4600 takes 460% and squeezes that down to 100%. Both of these Hypergammas are “broadcast safe” and the recordings made with them can be broadcast straight from the camera without any issues. The next Hypergamma is 3259. This takes a 325% range and squeezes this down to a 109% range, likewise 4609 takes 460% down to 109%. But why 109%? well the extra 9% gives you almost 10% more data to work with in post production compared to broadcast safe 100%. It also gives you the peak white level you need for display on the internet. Of course if you are doing a broadcast show you will need to ensure that the video levels in the finished programme don’t exceed 100%.

My preferred gamma is Hypergamma 4 (4609) as this gives the maximum dynamic range and gives a natural look, however the pictures can look a little flat so if I’m going direct from the camera to finished video without grading I use either a standard gamma or use the Black Gamma function to modify the curve. I’ll explain the Black Gamma in my next post.

There are 6 standard gammas to choose from. I like to stick with gamma 5 which is the ITU-709 HD standard gamma. To increase the dynamic range I use the Knee. The default knee point setting is 90, this is a reasonable setting, but if your shooting with clipping set to 100% you are not getting all the cameras latitude (the Knee at 90 works very well with clipping at 108%). Lowering the knee down to 83 gives you almost another stop of latitude, but you have to be careful as skin tones and faces can creep up towards 83%. It’s very noticeable if skin becomes compressed so you need to watch your exposure. This is also true of the Hypergammas and with them you may need to underexpose faces very slightly. The other option is to set the knee point to 88 and then also adjust the knee slope. The slope is the compression amount. A positive value is more compressed, negative less compressed. With the knee at 88 and slope set to +20 you get good latitude, albeit with quite highly compressed highlights.

If you want to play with the gammas and knee and see how they work one method you can use is to use a paint package on your PC (such as photoshop) to create a full screen left to right graduated image going from Black to white. Then shoot this with the camera (slightly out of focus) while making adjustments to the curves or knee and record the results along with a vocal description of each setting. Import the clips into your favorite editing package and use the waveform monitor or scopes you should be able to see a reasonable representation of the shape of the gamma curve and knee.

So my Gamma Choices are:

For material that will be post produced: Hypergamma 4609 (HG4)

For material that will be used straight from the camera: Standard Gamma 5 Knee at 90 with clip at 108% for non broadcast or Knee at 88 with slope +20 with white clip at 100% for direct to broadcast.