Tag Archives: sensors

Are Cosmic Rays Damaging my camera and flash memory?

Earth is being constantly bombarded by charged particles from outer space. Many of these cosmic rays come from exploding stars in distant galaxies. Despite being incredibly small some of these particles are travelling very fast and contain a lot of energy for their size. Every now and then one of these particles will pass through your camcorder.  What happens to both CMOS and CCD sensors as well as flash memory is that the energetic particle punches a small hole through the insulator of the pixel or memory cell. In practice what then happens is that charge can leak from the pixel to the substrate or from the substrate to the pixel. In the dark part of an image the amount of photons hitting the sensor is extremely small, each photon (in a perfect sensor) gets turn into an electron. It doesn’t take much of a leak for enough additional electrons to seep through the hole in the insulation to the pixel and give a false, bright readout. With a very small leak, the pixel may still be useable simply be adding an offset to to the read out to account for the elevated black level. In a more severe cases the pixel will be flooded with leaked electrons and appear white, in this case the masking circuits should read out the adjacent pixel.

For a computer running with big voltage/charge swings between 1’s and 0’s this small leakage current is largely inconsequential, but it does not take much to upset the readout of a sensor when your only talking of a handful of electrons. CMOS sensors are easier to mask as each pixel is addressed individually and during the camera start up it is normal to scan the sensor looking for excessively “hot” pixels. In addition many CMOS sensors incorporate pixel level noise reduction that takes a snapshot of the pixels dark voltage and subtracts it from the exposed voltage to reduce noise. A side effect of this is it masks hot pixels quite effectively. Due to the way a CCD’s output is pulled down through the entire sensor, masking is harder to do, so you often have to run a special masking routine to detect and mask hot pixels.

It may not sound much getting a single hot pixel, but if it’s right in the middle of the frame, every time that part of your scene is not brightly illuminated you see it winking away at you and on dark scenes it will stick out like a sore thumb, thankfully masking circuits are very effective at either zeroing out the raised signal level or reading out an adjacent pixel.

Flash memory can also experience these same insulation holes. There are two common types of Flash Memory, SLC and MLC. Single Level Cells have two states, on or off. Any charge means on and no charge means off. A small amount of leakage, in the short term, would have minimal impact as it could take months or years for the cell to full discharge, even then there is a 50/50 chance that the empty cell will still be giving an accurate ouput as it may have been empty to start with. Even so, long term you could loose data and a big insulation leak could discharge a cell quite quickly. MLC or Multi Level Cells are much more problematic, as the name suggests these cells can have several states, each state defined by a specific charge range, so one cell can store several bits of data. A small leak in a MLC cell can quickly alter the state of the cell form one level to the next, corrupting the data by changing the voltage.

The earths magnetic field concentrates these cosmic rays towards the north and south pole. Our atmosphere does provide some protection from them, but some of these particles can actually pass right through the earth, so lead shielding etc has no significant effect unless it is several feet thick. Your camera is at most risk when flying on polar routes. On an HD camera you can expect to have 3 or 4 pixels damaged during a year at sea level, with a CMOS camera you may never see them, with a CCD camera you may only see them with gain switched in.

SxS Pro cards (blue ones) are SLC, SxS-1 (Orange cards) use MLC as MLC works out cheaper as fewer cells are required to store the same amount of data. Most consumer flash memory is MLC. So be warned, storing data long term on flash memory may not be as safe as you might think!

The Great CMOS Debate. More on CMOS vs CCD.

Until a couple of years ago CMOS sensors were definitely the underdog, they tended to be very noisy due to electrical noise generated the on chip by the readout circuits and A/D converters. In addition they lacked sensitivity due to the electronics on the face of the chip leaving less room for the light sensitive parts. Today, on chip noise reduction has made it possible to produce CMOS sensors with very low noise and micro lenses and better design has mitigated most of the sensitivity problems. In terms of a static image there is very little difference between a CMOS sensor and a CCD sensor. Dynamic range is remarkably similar (both types of sensor use essentially the same light gathering methods), in some respects CMOS has the edge as they are less prone to overload issues. CCD’s are very expensive to manufacture as the way they are read out requires near lossless transfer of minute charges through a thousand or more (for HD) memory cells. The first pixel to be read passes down through over 1000 memory cells, if it was to loose 5% of it’s charge in each cell, the signal would be seriously reduced by the time it left the chip. The last pixel to be read out only passes through one memory cell, so it would be less degraded, this variation could ruin an image making it uneven. Although there is more electronics on a CMOS sensor, as each pixel is read directly a small amount of loss in the transfer is acceptable as each pixel would have a similar amount of loss. So the chips are easier to make as although the design is more complex, it is less demanding and most semiconductor plants can make CMOS sensors while CCD needs much more specialised production methods. Yes, CMOS sensors are more prone to motion artifacts as the sensor is scanned from top to bottom, one pixel at a time (A CCD is read in it’s entirety just about instantaneously). This means that as you pan, at the start of the pan the top of the sensor is being read and as the pan progresses the scan moves down the chip. This can make things appear to lean over and it’s known as skew. The severity of the skew is dependent on the readout speed of the chip. Stills cameras and mobile phone cameras suffer from terrible skew as they typically have very slow readout speeds, the sensors used in an EX have a much higher readout speed and in most real world situations skew is not an issue. However there may be some circumstances where skew can cause problems but my experience is that these are few and far between. The other issue is Flash Banding. Again this is caused by the CMOS scan system. As a flash gun or strobe light is of very short duration compared to the CMOS scan it can appear that only part of the frame is illuminated by the flash of light. You can reduce the impact of Flash Banding by shooting at the slowest possible shutter speed (for example shooting 25P or 24P with no shutter) but it is impossible to completely eliminate. When I shoot lightning and thunderstorms I often use a 2 frame shutter, shooting this way I get very few partial bolts of lightning, maybe 1 in 50. If you shoot interlace then you can use the Flash Band removal tool in Sony’s Clip Browser software to eliminate flash gun problems. CMOS sensors are becoming much more common in high end cameras. Arri’s new Alexa film replacement camera uses a CMOS sensor rated at 800asa with 13 stops of latitude. Red uses CMOS as does SI2K. Slumdog Millionaire (SI2K) was the first electronically shot film to get an Oscar for cinematography, so certainly CMOS has come a long way in recent years. CMOS is here to stay, it will almost certainly make bigger and bigger inroads at higher levels. Read speeds will increase and skew etc will become less of an issue. IMHO skew is not an issue to loose sleep over with the EX’s anyway. I shoot all sorts from hurricanes and tornadoes to fast jets and race cars. I have yet to come across a shot spoilt by skew, generally motion blur tends to mask any skew long before it gets noticeable. If you shoot press conferences or red carpet events where flash guns will be going off, then you may prefer a CCD camera as this is harder to deal with, but the EXs are such good value for the money and bring many other advantages such as lower power and less weight that you have to look at the bigger picture and ask what you expect from your budget.