Tag Archives: damage

Watch your viewfinder in bright sunshine (viewfinders with magnifiers or loupes).

Just a reminder to anyone using a viewfinder fitted with an eyepiece, magnifier or loupe not to leave it pointing up at the sun. Every year I see dozens of examples of burnt  and damaged LCD screens and OLED displays caused by sunlight entering the viewfinder eyepiece and getting focussed onto the screen and burning or melting it.

It can only take a few seconds for the damage to occur and it’s normally irreversible. Even walking from shot to shot with the camera viewfinder pointed towards the sky can be enough to do damage if the sun is out.

So be careful, cover or cap the viewfinder when you are not using it. Tilt it down when carrying the camera between locations or shots. Don’t turn to chat to someone else on set and leave the VF pointing at the sun. If you are shooting outside on a bright sunny day consider using a comfort shade such as an umbrella or large flag above your shooting position to keep both you and the camera out of the sun.

Damage to the viewfinder can appear as a smudge or dark patch on the screen that does not wipe off. If the cameras was left for a long period it may appear as a dark line across the image. You can also sometimes melt the surround to the LCD or OLED screen.

As well as the viewfinder don’t point your camera directly into the sun. Even an ND filter may not protect the sensor from damage as most regular ND filters allow the infra red wavelengths that do much of the damage straight through.  Shutter speed makes no difference to the amount of light hitting the sensor in a video camera, so even at a high shutter speed damage to the cameras sensor or internal ND’s can occur. So be careful when shooting into the sun. Use an IR ND filter and avoid shooting with the aperture wide open, especially with static shots such as time-lapse.

 

Are Cosmic Rays Damaging my camera and flash memory?

Earth is being constantly bombarded by charged particles from outer space. Many of these cosmic rays come from exploding stars in distant galaxies. Despite being incredibly small some of these particles are travelling very fast and contain a lot of energy for their size. Every now and then one of these particles will pass through your camcorder.  What happens to both CMOS and CCD sensors as well as flash memory is that the energetic particle punches a small hole through the insulator of the pixel or memory cell. In practice what then happens is that charge can leak from the pixel to the substrate or from the substrate to the pixel. In the dark part of an image the amount of photons hitting the sensor is extremely small, each photon (in a perfect sensor) gets turn into an electron. It doesn’t take much of a leak for enough additional electrons to seep through the hole in the insulation to the pixel and give a false, bright readout. With a very small leak, the pixel may still be useable simply be adding an offset to to the read out to account for the elevated black level. In a more severe cases the pixel will be flooded with leaked electrons and appear white, in this case the masking circuits should read out the adjacent pixel.

For a computer running with big voltage/charge swings between 1’s and 0’s this small leakage current is largely inconsequential, but it does not take much to upset the readout of a sensor when your only talking of a handful of electrons. CMOS sensors are easier to mask as each pixel is addressed individually and during the camera start up it is normal to scan the sensor looking for excessively “hot” pixels. In addition many CMOS sensors incorporate pixel level noise reduction that takes a snapshot of the pixels dark voltage and subtracts it from the exposed voltage to reduce noise. A side effect of this is it masks hot pixels quite effectively. Due to the way a CCD’s output is pulled down through the entire sensor, masking is harder to do, so you often have to run a special masking routine to detect and mask hot pixels.

It may not sound much getting a single hot pixel, but if it’s right in the middle of the frame, every time that part of your scene is not brightly illuminated you see it winking away at you and on dark scenes it will stick out like a sore thumb, thankfully masking circuits are very effective at either zeroing out the raised signal level or reading out an adjacent pixel.

Flash memory can also experience these same insulation holes. There are two common types of Flash Memory, SLC and MLC. Single Level Cells have two states, on or off. Any charge means on and no charge means off. A small amount of leakage, in the short term, would have minimal impact as it could take months or years for the cell to full discharge, even then there is a 50/50 chance that the empty cell will still be giving an accurate ouput as it may have been empty to start with. Even so, long term you could loose data and a big insulation leak could discharge a cell quite quickly. MLC or Multi Level Cells are much more problematic, as the name suggests these cells can have several states, each state defined by a specific charge range, so one cell can store several bits of data. A small leak in a MLC cell can quickly alter the state of the cell form one level to the next, corrupting the data by changing the voltage.

The earths magnetic field concentrates these cosmic rays towards the north and south pole. Our atmosphere does provide some protection from them, but some of these particles can actually pass right through the earth, so lead shielding etc has no significant effect unless it is several feet thick. Your camera is at most risk when flying on polar routes. On an HD camera you can expect to have 3 or 4 pixels damaged during a year at sea level, with a CMOS camera you may never see them, with a CCD camera you may only see them with gain switched in.

SxS Pro cards (blue ones) are SLC, SxS-1 (Orange cards) use MLC as MLC works out cheaper as fewer cells are required to store the same amount of data. Most consumer flash memory is MLC. So be warned, storing data long term on flash memory may not be as safe as you might think!