Category Archives: cameras

Don’t Panic! The A7S III didn’t just make your big pro camera obsolete.

Sony’s new A7S III video centric mirrorless camera.

So Sony have just launched the A7S III. And very impressive it is. Amazing low light performance, great dynamic range and lots of nice 10 bit codecs. You can even get a 16 bit raw output if you want. I can’t wait to get one. But I really don’t see the A7S III as a threat to or replacement of my FX9 or any other 4K professional video camera.

All the same discussions took place when the original A7S was launched. Sony F5 owners looked at the A7S and said – heck how can that little camera shoot full frame 4K while my camera can’t even shoot s35 4K. Why can the A7S have AF when my F3/F5 doesn’t. How can a camera that produces such beautiful images only cost 1/5th of what my F5 costs. But here we are 6 years on and the A7S and A7S II didn’t replace any of the bigger cameras and when the FS5 was launched people snapped up the FS5, often to replace an A7.

Why? Ergonomics.
 
I don’t ever want to go back to having to carry and use a big box of different ND filters for different light levels. I find the small LCD screen on the back of a DSLR to be of very limited use and while the A7S III does have a very good EVF it’s placement makes it hard to use it on a tripod or in anything other than a simple hand hold with the camera up against your face.
If you want to shoot log then you really want built in LUTs. There are the battery and power questions. How do you power the camera and accessories without needing two or more power systems or a rig to take a big external battery and a bunch of adapters? Then there’s having buttons and switches for all the frequently accessed functions. I could go on but you only have to look at the many franken-rigs that end up built around DSLR type cameras just to make them usable to see the problems. Almost always the first purchase to go with a DSLR is a cage. Why do you need a cage? Because you know your going to have to bolt a ton of stuff to that once small, portable camera to turn it into a professional video making tool.

 

Sure, I will almost certainly get an A7S III and it will be a great camera to compliment my FX9. And yes, there may even be some projects where I only take the A7S III, just as there have been shoots where I have used just my A7S. But it won’t ever replace my FX9, they are two very different tools, each with its own strengths and weaknesses.

 

The image quality gap between traditional large professional video cameras and handheld stills type cameras will continue to get smaller and smaller as electronics continue to be further miniaturised, that is inevitable, but the cameras form factor will still be important.
 
The small cars of today often have all the same bells and whistles as a large luxury car of 10 years ago. Let’s say you’ve gone on vacation (remember those?) and it’s a road trip. You get to the car rental office and you have a choice between a large, spacious, stable, less stressed car or a small car that has to work a bit harder to get you to the same place. Both will get you there, but which do you choose? There might be some instances where the small car is preferrable, perhaps you will be in a lot of narrow city streets a lot. But for most road trips I suspect most people will opt for the big comfy cruiser most of the time.

For me the A7S III will be that nippy little car, a camera that I can pop in a pocket to grab beautiful images where I can’t use a bigger camera. But for my main workhorse I don’t want fiddly, I don’t want a ton of accessories hanging off it just to make it workable. I want the luxury cruiser that will just take it all in it’s stride and get on with the job and right now that’s my FX9.

How To Live Stream With The Sony PXW-Z90 and NX80.

The Sony PXW-Z90 is a real gem of a camcorder. It’s very small yet packs a 1″ sensor , has real built in ND filters, broadcast codecs and produces a great image. On top of all that it can also stream live directly to Facebook and other similar platforms. In this video I show you how to set up the Z90 to stream live to YouTube. Facebook is similar. The NX80 from Sony is very similar and can also live stream in the same way.

 

Rigging the PXW-FX9

In case you missed the live stream I have uploaded the recording I made of my almost hour long video with hints, tips and ideas for rigging the PXW-FX9. In the video I cover things like base plates including VCT and Euro Plate. I look at hand grip options, rod rails and matte boxes as well as power options including V-mount adapters and the XDAC-FX9.  Of course everything in the video is based on my own personal needs and requirements but I think there is some good information in there for anyone looking to accessorize their FX9, whether for working from a tripod or handheld.

 

Time To Buy A New Camera – But What To Do With The Old One?

So, you have decided to take the plunge and invest in a new camera. You’ve been shooting with your old camera for a couple of years or more and it’s served you well. But when you try to trade it in or sell it you find it’s really not worth a great deal. Maybe only a small fraction of what you paid for it. What do you do?

For a start a dealer won’t give you a great deal on an older camera that’s been superseded by a newer model, unless there is some kind of very special trade in deal (even then you may be able to negotiate a better discounted price from the dealer and then sell the old camera separately). I’m assuming you are buying the new one because it’s better than the old one. Dealers don’t want large numbers of older cameras sitting on shelves unless they can afford to carry the risk of them not selling. Some dealers might be willing to try to sell it for you on a commission basis and that might be one way to go. But if you can sell it privately, you’ll typically get a bit more money for it than a trade in.

Whatever you do it’s time to put your business head on, rather than allowing any emotional attachment to a camera (that may well have served you well) to influence your decision making. In a years time it’s likely the old camera will be worth even less.

Ask yourself the following question: Will  keeping the camera earn me more additional profit than the money I will get from selling it, even if it is an uncomfortably low price? If the answer is no, then sell it now while it’s still worth something and don’t hang around, get rid of it while you can.

Don’t just hang on to it because you can’t bear to sell it for such a low price. This isn’t a child or loved one, it’s a tool and there is no point in having a tool that’s not going to be used, or might get used once in the next year, cluttering up your office. I’ve often made the mistake of hanging on to a much loved camera to use as a backup or B camera and never actually used it. Instead it’s sat on a shelf for a couple of years gathering dust until it eventually it gets discarded (it might impact your equipment insurance, it still needs to be insured as an insurance company can sometimes refuse to pay out if something happens and you are found to be under insured).

Remember, to be useful a B camera will also typically needs it’s own tripod, batteries and all the other support kit the main camera needs. So hanging on to a second camera may mean having to also hang on to a lot of other kit as well.

But if you are confident it will make you that extra money then keep it.

Another consideration is what could you do with the the money you can get for it? Would it allow you to invest in some new lenses to go with your new camera? Perhaps a better tripod, new lights, stuff you would use day-in day-out rather than once in a blue moon. It’s much better to have you hard earned cash working for you on a regular basis than hanging on to something  “just in case”. In those once in a blue moon, just in case scenarios there are places called rental houses. And if the project that needs that once in a blue moon second camera isn’t going to pay to hire one, then why are you providing it? You are running a business not a charity aren’t you? A bit dramatic perhaps and there will always be exceptions to the rule. But that is the way you should be thinking.

If the old camera has been good for you, the emotional attachment often leads to hanging on to a piece of kit that really should be moved on to make way for new tools that will help you grow the business. If you do keep it, instead of it hanging out on a shelf, do consider hiring it out. It’s less damaging to your business if a spare or backup camera gets stolen or damaged on a rental than your main camera, so this could be a toe in the water of a sideline rental business. But do explore you insurance restrictions and limitations, plus consider whether you want strangers turning up at your home or place of business to pick up kit at all sorts of hours.

I’m definitely not saying you have to sell your older camera, just try to take any emotional attachment out of the decision and figure out what’s best for the business.

Hot Pixels and White Dots From My New Camcorder (FX9 and many others).

So you have just taken delivery of a brand new PXW-FX9. Turned it on and plugged it in to a 4K TV or monitor – and shock horror there are little bright dots in the image – hot pixels.

First of all, don’t be alarmed, this is not unusual, in fact I’d actually be surprised if there weren’t any, especially if the camera has travelled in any airfreight.

Video sensors have millions of pixels and they are prone to disturbance from cosmic rays. It’s not unusual for some to become out of spec. So all modern cameras incorporate various methods of recalibrating or re-mapping those pesky problem pixels. On the Sony professional cameras this is called APR. Owners of the Sony F5, F55, Venice and FX9 will see a “Perform APR” message every couple of weeks as this is a function that needs to be performed regularly to ensure you don’t get any problems.

You should always run the APR function after flying with the camera, especially on routes over the poles as cosmic rays are greater in these areas. Also if you intend to shoot at high gain levels it is worth performing an APR run before the shoot.

If your camera doesn’t have a dedicated APR function, typically found in the maintenance section of the the camera menu system, then often the black balance function will have a very similar effect. On some Sony cameras repeatedly performing a black balance will active the APR function.

If there are a lot of problem pixels then it can take several runs of the APR routine to sort them all out. But don’t worry, it is normal and it is expected. All cameras suffer from it. Even if you have 1000 dead pixels that’s still only a teeny tiny fraction of the 19 million pixels on the sensor.

APR just takes 30 seconds or so to complete. It’s also good practice to black balance at the beginning of each day to help minimise fixed pattern noise and set the cameras black level correctly. Just remember to ensure there is a cap on the lens or camera body to exclude all outside light when you do it!

SEE ALSO: https://www.xdcam-user.com/2011/02/are-cosmic-rays-damaging-my-camera-and-flash-memory/

Struggling With Blue LED Lighting? Try Turning On The adaptive Matrix.

It’s a common problem. You are shooting a performance or event where LED lighting has been used to create dramatic coloured lighting effects. The intense blue from many types of LED stage lights can easily overload the sensor and instead of looking like a nice lighting effect the blue light becomes an ugly splodge of intense blue that spoils the footage.

Well there is a tool hidden away in the paint settings of many recent Sony cameras that can help. It’s called “adaptive matrix”.

When adaptive matrix is enabled, when the camera sees intense blue light such as the light from a blue LED light, the matrix adapts to this and reduces the saturation of the blue colour channel in the problem areas of the image. This can greatly improve the way such lights and lighting look. But be aware that if trying to shoot objects with very bright blue colours, perhaps even a bright blue sky, if you have the adaptive matrix turned on it may desaturate them. Because of this the adaptive matrix is normally turned off by default.

If you want to turn it on, it’s normally found in the cameras paint and matrix settings and it’s simply a case of setting adaptive matrix to on. I recommend that when you don’t actually need it you turn it back off again.

Most of Sony’s broadcast quality cameras produced in the last 5 years have the adaptive matrix function, that includes the FS7, FX9, Z280, Z450, Z750 and many others.

Why Can’t I Get Third Party BP-U Batteries any more?

In the last month or so it has become increasingly hard to find dealers or stores with 3rd party BP-U style batteries in stock.

After a lot of digging around and talking to dealers and battery manufacturers it became apparent that Sony were asking the manufacturers of BP-U style batteries to stop making and selling them or face legal action. The reason given being that the batteries impinge on Sony’s Intellectual Property rights.

Why Is This Happening Now?

It appears that the reason for this clamp down is because it was discovered that the design of some of these 3rd party batteries was such that the battery could be inserted into the camera in a way that instead of power flowing through the power pins to the camera, power was flowing through the data pins. This will burn out the circuit boards in the camera and the camera will no longer work.

Users of these damaged cameras, unaware that the problem was caused by the battery were sending them back to Sony for repair under warranty. I can imagine that many arguments would have then followed over who was to pay for these potentially very expensive repairs or camera replacements.

So it appears that to prevent further issues Sony is trying to stop potentially damaging batteries from being manufactured and sold.

This is good and bad. Of course no one wants to use a battery that could result in the need to replace a very expensive camera with a new one (and if you were not aware it was the battery you could also damage the replacement camera). But many of us, myself included, have been using 3rd party batteries so that we can have a D-Tap power connection on the battery to power other devices such as monitors.

Only Option – BP-U60T?

Sony don’t produce batteries with D-Tap outlets. They do make a battery with a hirose connector (BP-U60T), but that’s not what we really want and compared to the 3rd party batteries it’s very expensive and the capacity isn’t all that high.

Sony BP-U60T with 4 pin hirose DC out.

So where do we go from here?

If you are going to continue to use 3rd party batteries, do be very careful about how you insert them and be warned that there is the potential for serious trouble. I don’t know how widespread the problem is.

We can hope perhaps that maybe Sony will either start to produce batteries with a D-Tap of their own. Or perhaps they can work with a range of chosen 3rd party battery manufacturers to find a way to produce safe batteries with D-Tap outputs under licence.

What is Dual Base ISO and why is it important?

Almost all modern day video and electronic stills cameras have the ability to change the brightness of the images they record. The most common way to achieve this is through the addition of gain or through the amplification of the signal that comes from the sensor. 

On older video cameras this amplification was expressed as dB (decibels) of gain. A brightness change of 6dB is the same as one stop of exposure or a doubling of the ISO rating. But you must understand that adding gain to raise the ISO rating of a camera is very different to actually changing the sensitivity of a camera.

The problem with increasing the amplification or adding gain to the sensor output is that when you raise the gain you increase the level of the entire signal that comes from the sensor. So, as well as increasing the levels of the desirable parts of the image, making it brighter, the extra gain also increases the amplitude of the noise, making that brighter too.

Imagine you are listening to an FM radio. The signal starts to get a bit scratchy, so in order to hear the music better you turn up the volume (increasing the gain). The music will get louder, but so too will the scratchy noise, so you may still struggle to hear the music. Changing the ISO rating of an electronic camera by adding gain is little different. When you raise the gain the picture does get brighter but the increase in noise means that the darkest things that can be seen by the camera remain hidden in the noise which has also increased in amplitude.

Another issue with adding gain to make the image brighter is that you will also normally reduce the dynamic range that you can record.

This is because amplification makes the entire signal bigger. So bright highlights that may be recordable within the recording range of the camera at 0dB or the native ISO may be exceed the upper range of the recording format when even only a small amount of gain is added, limiting the high end.

Adding gain amplifies the brighter parts of the image so they can now exceed the cameras recording range.

 

At the same time the increased noise floor masks any additional shadow information so there is little if any increase in the shadow range.

Reducing the gain doesn’t really help either as now the brightest parts of the image from the sensor are not amplified sufficiently to reach the cameras full output. Very often the recordings from a camera with -3dB or -6dB  of gain will never reach 100%.

Negative gain may also reduce the cameras dynamic range.



A camera with dual base ISO’s works differently.

Instead of adding gain to increase the sensitivity of the camera a camera with a dual base ISO sensor will operate the sensor in two different sensitivity modes. This will allow you to shoot at the low sensitivity mode when you have plenty of light, avoiding the need to add lots of ND filters when you want to obtain a shallow depth of field. Then when you are short of light you can switch the camera to it’s high sensitivity mode.

When done correctly, a dual ISO camera will have the same dynamic range and colour performance in both the high and low ISO modes and only a very small difference in noise between the two.

How dual sensitivity with no loss of dynamic range is achieved is often kept very secret by the camera and sensor manufacturers. Getting good, reliable and solid information is hard. Various patents describe different methods. Based on my own research this is a simplified description of how I believe Sony achieve two completely different sensitivity ranges on both the Venice and FX9 cameras.

The image below represents a single microscopic pixel from a CMOS video sensor. There will be millions of these on a modern sensor. Light from the camera lens passes first through a micro lens and colour filter at the top of the pixel structure. From there the light hits a part of the pixel called a photodiode. The photodiode converts the photons of light into electrons of electricity. 

Layout of a sensor pixel including the image well.

In order to measure the pixel output we have to store the electrons for the duration of the shutter period. The part of the pixel used to store the electrons is called the “image well” (in an electrical circuit diagram the image well would be represented as a capacitor and is often simply the capacitance of the the photodiode itself).

The pixels image well starts to fill up and the signal output level increases.

Then as more and more light hits the pixel, the photodiode produces more electrons. These pass into the image well and the signal increases. Once we reach the end of the shutter opening period the signal in the image well is read out, empty representing black and full representing very bright.

Consider what would happen if the image well, instead of being a single charge storage area was actually two charge storage areas and there is a way to select whether we use the combined image well storage areas or just one part of the image well.

Dual ISO pixel where the size of the image well can be altered.

When both areas are connected to the pixel the combined capacity is large. So it will take more electrons to fill it up, so more light is needed to produce the increased amount of electrons. This is the low sensitivity mode. 

If part of the charge storage area is disconnected and all of the photodiodes output is directed into the remaining, now smaller storage area then it will fill up faster, producing a bigger signal more quickly. This is the high sensitivity mode.

What about noise?

In the low sensitivity mode with the bigger storage area any unwanted noise generated by the photodiode will be more diluted by the greater volume of electrons, so noise will be low. When the size of the storage area or image well is reduced the noise from the photodiode will be less diluted so the noise will be a little bit higher. But overall the noise will be much less that that which would be seen if a large amount of extra gain was added.

Note for the more technical amongst you: Strictly speaking the image well starts full. Electrons have a negative charge so as more electrons are added the signal in the image well is reduced until maximum brightness output is achieved when the image well is empty!!

As well as what I have illustrated above there may be other things going on such as changes to the amplifiers that boost the pixels output before it is passed to the converters that convert the pixel output from an analog signal to a digital one. But hopefully this will help explain why dual base ISO is very different to the conventional gain changes used to give electronic cameras a wide range of different ISO rating.

On the Sony Venice and the PXW-FX9 there is only a very small difference between the noise levels when you switch from the low base ISO to the high one. This means that you can pick and choose between either base sensitivity level depending on the type of scene you are shooting without having to worry about the image becoming unusable due to noise.

NOTE: This article is my own work and was prepared without any input from Sony. I believe that the dual ISO process illustrated above is at the core of how Sony achieve two different base sensitivities on the Venice and FX9 cameras. However I can not categorically guarantee this to be correct.

More about S-Cinetone and the so called Venice Color Science.

UPDATED WITH NEW INFO, Nov 23rd 2019.

What is the “Venice Look”?

Sony had often been criticized for having a default look to their cameras that wasn’t “film like”. This was no accident as Sony have been a leading producer of TV cameras for decades and a key thing for a broadcaster is that both old and new cameras should match. So for a very long time all of Sony’s cameras were designed to look pretty much like any other TV camera.

But this TV look wasn’t helping Sony to sell their film style cameras. So when they developed the image processing for the Venice camera a lot of research was done into what makes a pretty picture. Then over a period of about 18 months a new LUT was created for the Venice camera to take advantage of that sensors improved image quality and to turn the output into a beautiful looking image. This LUT was designed to still leave a little room to grade so is slightly flat. But it does include a big highlight roll off to help reserve a lot of the cameras dynamic range.

This LUT  is called s709 (I think it simply stands for “Sony 709) and it’s a large part of the reason why, out of the box, the Venice camera looks the way it does. Of course a skilled colourist might only rarely use this LUT and may make the output from a Venice look very different, but a Venice with s709 is regarded as the default “Venice look”, and it’s a look that a lot of people really, really like. It’s what comes out of the SDI ports, is what’s seen in the viewfinder and can be recorded to the SxS cards unless you select the legacy 709(800) LUT. s709 is the LUT applied by default to X-OCN from Venice by default. 

What is Color Science

Colour Science is the new fancy term that Red have turned into a catch-all for anything to do with colour and it’s now much abused.  Every color video camera ever made uses color science to determine the way the image looks. it’s nothing new. All colour science is, is how all the different elements of a camera and it’s workflow work to produce the final colour image. But in the last couple of years it seems to have become to mean “color magic” or “special sauce”.

If we are to be totally accurate the only camera with Venice colour science is Venice. No other camera has exactly the same combination of optical filters, sensor, processing, codecs and workflow. No other camera will replicate exactly the way Venice responds to light and turns it into a color image. You might be able to make the output of another camera appear similar to a Venice, but even then it won’t be the same colour science. What it would be is perhaps the “Venice look”.

The FS5 II and it’s new default look.

So when Sony released the FS5 II they were very careful to describe the default mode as providing a Venice “like” image, tuned to provide softer, alluring skin tones using insight and expertise gained during the development of Venice.  Because that’s what it is, it looks more like Venice than previous generations of Sony cameras because it has been tuned to output a image that looks similar. But it isn’t really Venice color science, it’s a Venice look-a-like or at least as similar as you can get, even though it’s a very different sensor, but with a touch of extra contrast added to make it more suitable for an out of the box look that won’t necessarily be graded.

And the PXW-FX9 and s-Cinetone?

The FX9  has new colour filters, a new sensor, new processing. But it is not a Venice. In Custom mode it has what Sony are now calling “S-Cinetone” which is set to become their new default look for their film style cameras. This once again is based on the Venice look and shares many similarities to the Venice colour science, but it will never be the full Venice colour science because it can’t be, it’s different hardware.  S-Cinetone is a combination of a gamma curve called “original” and a matrix called “S-Cinetone” in the FX9. When used together S-Cinetone gives similar colours to Venice but has  increased contrast suitable for direct-to-air applications where the material won’t be graded (s709 in comparison is  flatter).  S-Cinetone has a very gentle highlight roll off and produces a film like look that is tailored for video productions rather than the flatter s709 look which is designed for on set monitoring on film style shoots. If you want you can mix different gamma curves with the S-Cinetone matrix to have the Venice like colours but with different contrast ranges to suit the scene that you are shooting. If you need a broadcast safe image you can use Hypergamma1 with the S-Cinetone matrix.

Is the Venice look always there?

Previous generations of Sony cameras used a common default 709 gamma often denoted as STD5 combined with a 709 colour matrix. This is what most of us probably called the “Sony look”. The exact colour science in each camera with this look would have been quite different as there were many combinations of filters, sensors and processing, but those variations in processing were designed such that the final output of generations of Sony TV cameras all looked almost exactly the same. This too still exists in the FX9 and when set to STD5 the FX9 will produce an image very, very close to earlier generations of Sony camera. But from this new sensor with the latest filters etc. you can still have the old look. This just demonstrates how the broad brush use of the term colour science is so confusing as the FX9 is a new camera with new colour science, but it can still look just like the older cameras.

What about when I shoot S-Log3?

When shooting S-Log3 with the FX9, then you are shooting S-Log3. And S-Log3/S-Gamut3 )or S-gamut3.cine) is a set standard where certain numerical values represent certain real world colours and brightnesses. So the S-Log3 from an FX9 will look very similar to the S-Log3 from a Venice, which is similar to the S-Log3 from a F55 which is similar to the S-Log3 from an FS7.

But compared to an FS7 at least, the different, improved sensor in the FX9 will mean that it will be able to capture a bigger dynamic range, it will have less noise and the sensors response to colour is much improved. BUT it will still be recorded in the same manner using the same gamma curve and colour space with the same numerical values representing the same brightness levels and colours. However the fact that the sensor is different will mean there will be subtle differences within the image. One obvious one being the extra dynamic range, but also things like better colour separation and more true to life color response at the sensor level.

Then you apply the s709 LUT, the very same LUT as used for Venice. So those very same numerical values are turned into the same expected colours and brightness levels. But because it’s a different sensor some values may have been better captured, some worse, so while overall the image will look very, very similar there will be subtle differences, it’s the subtle differences that make one look more natural or more pleasing than the other.  For example the FX9 image will have less noise and greater DR than the image from and FS7. In addition the FX9 images will have more pleasing looking skin tones because from what I have seen the sensor responds better to the tones that make up a face etc.

Why not use the same name for s709 and S-cinetone?

S-Cinetone is different to s709. One is a gamma curve plus colour matrix designed to be recorded as is for television and video applications. You can’t change middle grey or white, you can’t alter the highlight or shadow ranges, other than by using alternate gammas with the S-Cinetone matrix. The default “original” gamma curve has  more contrast than the S-Log3 + s709 LUT and the colours although similar are slightly different.

s709 is a LUT applied to S-Log3 material designed to provide a film like look for on set monitoring. Both S-Cinetone and s709 will look similar, but they are two different things that require two very different workflows, to call them the same thing would be confusing. You get a call from the producer “I want you to shoot S-Cinetone”…. Which one? The log one or the S-Cinetone one?

Because the FX9’s optical low pass filter, ND filter, sensor colour filters, pixels, sensor output circuits and initial processing of the image are all the same whether in S-Cinetone or S-Log3, then those aspects of the colour science are common for both. But when shooting s-Log3 you have a huge range of options in post, not just s709.

So in reality the FX9 has several different color sciences. One that mimics a default Venice camera without needing to shoot log and grade. One that mimics earlier generations of sony TV cameras. Another that mimics a Sony Venice when shooting S-Log3 and using the s709 LUT.

The PXW-FX9 in the real world.

There are already a few setup and staged video samples from the new Sony PXW-FX9 circulating on the web. These are great. But how will it perform and what will the pictures look like for an unscripted, unprepared shoot? How well will the autofocus work out in the street, by day and by night? How does the S-Cinetone gamma and colour in custom mode compare with S-Log3 and the s709 Venice LUT compare?

To answer these questions I took a pre-production FX9 into the nearby town of Windsor with a couple of cheap Sony E-Mount lenses. The lenses were the Sony 50mm f1.8 which costs around $350 USD and the 28-70mm f3.5-f5.6 zoom that costs about $400 USD and is often bundled as a kit lens with some of the A7 series cameras.

To find out how good the auto focus really is I decided to shoot entirely using auto focus with the AF set to face priority. The only shot in the video where AF was not used is the 120fps slow-mo shot of the swans at 0:53 as AF does not work at 120fps.

Within the video there are examples of both S-Cinetone and S-Log3 plus the s709 LUT. So you know which is which I have indicated this is the video. I needed to do this as the two cut together really well. There is no grading as such. The S-Cinetone content is exactly as it came from the camera. The CineEI S-Log3 material was shot at the indicated base ISO and EI, there was no exposure offset. In post production all I did was add the s709 LUT, that’s it, no other corrections.

The video was shot using the Full Frame 6K scan, recording to UHD XAVC-I.

For exposure I used the cameras built in waveform display. When in CineEI I also used the Viewfinder Gamma Display assist function. Viewfinder Gamma assist gives the viewfinder the same look as the 709(800) LUT. What’s great about this is that it works in all modes and at all frame rates. So even when I switched to 2K Full Frame scan and 120fps the look of the image in the viewfinder remained the same and this allowed me to get a great exposure match for the slow motion footage to the normal speed footage. 

AUTOFOCUS.

There are some great examples of the way the autofocus works throughout the video. In particular the shot at 0:18 where the face priority mode follows the first two girls that are walking towards the camera, then as they exit the frame switches to the two ladies following behind without any hunting. I could not have done that any better myself. Another great example is at 1:11 where the focus tracks the couple walking towards the camera and once they exit the shot the focus smoothly transitions to the background. One of the nice things about the AF system is you can adjust the speed at which the camera re-focusses and in this case I had slowed it down a bit to give it a more “human” feel.

Even in low light the AF works superbly well. At 1:33 I started on the glass of the ornate arch above the railway station and panned down as two people are walking towards me. The camera took this completely in it’s stride doing a lovely job of shifting the focus from the arch to the two men. Again, I really don’t think I could have done this any better myself.

NOISE.

Also, I am still really impressed by how little noise there is from this camera. Even in the high ISO mode the camera remains clean and the images look great. The low noise levels help the camera to resolve colour and details right down into the deepest shadows. Observe how at 2:06 you can clearly see the different hues of the red roses against the red leather of the car door, even though this is a very dark shot.

The reduction in noise and increase in real sensitivity also helps the super slow motion. Compared to an FS7 I think the 120fps footage from the FX9 looks much better. It seems to be less coarse and less grainy. There is still some aliasing which is unavoidable if you scan the sensor at a lower resolution, but it all looks much better controlled than similar material from an FS7.

DYNAMIC RANGE.

And when there is more light the camera handles this very well too.  At 1:07 you can see how well S-Cinetone deals with a very high contrast scene. There are lots of details in the shadows and even though the highlights on the boats are clipped, the way the camera reaches the end of it’s range is very nice and it doesn’t look nasty, it just looks very bright, which it was.

For me the big take-away from this simple shoot was just how easy it is to get good looking images. There was no grading, no messing around trying to get nice skintones. The focus is precise and it doesn’t hunt.  The low noise and high sensitivity means you can get good looking shots in most situations. I’m really looking forward to getting my own FX9 as it’s going to make life just that little bit easier for many of my more adventurous shoots.

For more information on the PXW-FX9 click here. 

Or take a look at the Sony website.