Tag Archives: FS-raw

Using different gamuts when shooting raw with the PXW-FS5

This topic comes up a lot. Whenever I have been in discussion with those that should know within Sony they have made it clear that the FS-Raw system is designed around S-Log2 for monitoring and post production etc. This stems from the fact that FS-Raw, the 12 bit linear raw from the FS700, FS7 and FS5 was first developed for the FS700 and that camera only had SGamut and S-Log2. S-Log3 didn’t come until a little later.

The idea is that if the camera is set to SGamut + S-Log2 it is optimised for the best possible performance. The raw signal is then passed to the raw recorder where it will be recorded. For a raw recorder that is going to convert the raw to ProRes or DNxHD the recorder converts the raw to S-SGamut + Log2 so that it will match any internal recordings.

Finally in post the grading software would take the FS-Raw and convert it to SGamut + S-Log2 for further grading. By keeping everything as SGamut and S-Log2 throughout the workflow your brightness levels, the look of the image and any LUT’s that you might use will be the same. Internal and external recordings will look the same. And this has been my experience. Use PP7 with SGamut and S-Log2 and the workflow works as expected.

What about the other Gamuts?

However: The FS5 also has SGamut3, SGamut3.cine and S-Log3 available in the picture profiles. When shooting Log many people prefer S-Log3 and SGamut3.cine. Some people find it easier to grade S-Log3 and there are more LUT’s available for S-Log3/SGamut3.cine than for SGamut and S-Log2. So there are many people that like to use PP8 or PP9 for internal S-Log.

However, switching the FS5’s gamma from S-log2 to S-log3 makes no difference to the raw output. And it won’t make your recorder convert the raw to ProRes/DNxHD as S-Log3 if that’s what you are hoping for. But changing the gamut does have an effect on the colors in the image.

But shouldn’t raw be just raw sensor data?

For me this is interesting, because if the camera is recording the raw sensor output, changing the Gamut shouldn’t really change what’s in the raw recording. So the fact that the image changes when you change the Gamut tells me that the camera is doing some form of processing or gain/gamma adjustment to the signal coming from the sensor. So to try and figure out what is happening and whether you should still always stick to SGamut I decided to do a little bit of testing. The testing was only done on an FS5 so the results are only applicable to the FS5. I can’t recall seeing these same changes with the FS7.

DSC Labs Chroma Tru Test Chart.

For the tests I used a DSC Labs Chroma-tru chart as this allows you to see how the colors and contrast in what you record changes both visually and with a vectorscope/waveform. As well as the chart that you shoot, you download a matching reference overlay file that you can superimpose over the clip in post to visually see any differences between the reference overlay and the way the shot has been captured and decoded. It is also possible to place another small reference chart directly in front of the monitor screen if you need to evaluate the monitor or any other aspects of your full end to end production system. It’s a very clever system and I like it because as well as being able to measure differences with scopes you can also see any differences quite clearly without any sophisticated measuring equipment.

Test workflow:

The chart was illuminated with a mix of mostly real daylight and a bit of 5600K daylight balanced light from a Stella LED lamp. I wanted a lot of real daylight to minimise any errors that could creep in from the spectrum of the LED light (The Stellas are very good but you can’t beat real daylight). The camera was set to 2000 ISO. The raw signal was passed from the camera to an Atomos Shogun Inferno where the clips were recorded as both ProRes Raw and also by using the recorders built in conversion to S-Log2 for internal recording as ProRes HQ. I did one pass of correctly exposed clips and a second pass where the clips were under exposed by 1 stop to asses noise levels. The lens was the 18-105mm kit lens, which without the cameras built in lens compensation does show a fair bit of barrel distortion as you will see!

The ProRes clips were evaluated in DaVinci Resolve using the DaVinci Color Managed workflow with the input colorspace set to S-Log2/Sgamut for every clip and output colorspace set to 709. I also had to set the input range of the ProRes clips to Full Range as this is what S-Log2 files always are. If I didn’t change the input range to Full Range the clips exhibited clipped and crushed black after conversion to 709, this confirms that the clips recorded by the Shogun were Full Range – which follows the S-Log specifications.

I did also take a look at the clips in Adobe Premiere and saw very similar results to Resolve.

I will do a separate report on my findings with the ProRes Raw in FCP as soon as I get time to check out the ProRes raw files properly.

So, what did I find?

In the images below the reference file has been overlaid on the very center of the clip. It can be a little hard to see. In a perfect system it would be impossible to see. But you can never capture the full contrast of the chart 1:1 and all cameras exhibit some color response imperfections. But the closer the center overlay is to the captured chart, the more accurate the system is. Note you can click on any of the capture examples to view a larger version.

This is the reference file (by the time it gets posted on my website as a jpeg I would no longer guarantee the colors etc. But when you look at the images below you will see this superimposed over the center of the clips.

Below is Picture Profile 6 (PP6) SGamut with S-Log2. It’s pretty good match. The camera didn’t quite capture the full contrast of the chart and that’s to be expected, reflections etc make it very difficult to get perfect blacks and shadow areas. But color wise it looks quite reasonable although the light blue’s are a little weak/pink.

SGamut and S-Log2

Below is Picture Profile 7 (PP7) SGamut3 with S-Log3. Straight away we can see that even though the camera was set to S-log3, the contrast is the same in the S-Log2 color managed workflow proving that the gamma of the recording is actually ProRes recording from the Shogun is S-log2, confirming what we already know which is that changing the log curve in the camera makes no difference to the raw recording and no difference to the raw to ProRes conversion in the recorder.

Note the extra noise in the greens. The greens appear to have more color, but they also appear a little darker. If you reduce the brightness of a color without altering the saturation the color appears to be deeper and I think that is what is happening here, it is a lightness change rather than just a saturation change. There is also more noise in the darker bars, grey and black really are quite noisy. Light blues have the same weak/pink appearance and there is a distinct green tint to the white, grey and black bars.

SGamut3 with S-Log3

Below is when the camera was set to SGamut3.cine with S-Log3. Again we can see that the recording gamma is obviously S-Log2. The greens are still a touch stronger looking but now there is less noise in the greens. Cyan and reds are slightly lighter than SGamut and yellows appear a bit darker. This is also a little more noisy overall than SGamut, but not as bad as SGamut3. When you play the 3 clips, overall SGamut has the least noise, SGamut3.cine is next and then SGamut3 is clearly the noisiest. As with SGamut there is a distinct green tint to the white, grey and black bars.

SGamut3.cine with S-Log3

So that’s what the images look like, what do the scopes tell us. Again I will start with SGamut and we can see that the color response is pretty accurate. This suggests that Atomos do a good job of converting the raw to S-Log2/SGamut before it’s recorded and confirms what we already know which is this is that this is clearly how the system is designed to work. Note how the Red strip falls very close to the R box on the 2x vectorscope, yello almost in Y, green very close to G, Blue almost in B. Magenta isn’t so clever and this probably explains why the pinky blues at the top of the chart are not quite right. Do remember that all these test were done with the preset white balance so it’s not surprising to see some small offsets as the white balance won’t have been absolutely perfect. But that imperfection will be the same across all of my test examples.

SGamut + S-Log2

Below is SGamut3. The first thing I noticed was all the extra noise on the right side of the waveform where the greens are. The waveform also shows the difference in lightness compared to SGamut with different colors being reproduced at different brightness levels. The greens are being reproduced at a slightly lower luma level and this is probably why the greens appear more saturated. Also notice how much more fuzzy the vectorscope is, this is due to some extra chroma noise. There is a bit more red and magenta is closer to it’s target box, but all the other key colors are further from their boxes. Yellow and Green and Cyan are all a long way from their target boxes. Overall the color is much less accurate than SGamut and there is more chroma noise.

And finally below is SGamut3.cine. There is less noise on the green side of the waveform than SGamut and SGamut3 but we still have a slightly lower luma level for green, making green appear more saturated. Again overall color accuracy is not as good as SGamut. But the vector scope is still quite fuzzy due to chroma noise.

Under Exposure:

I just want to show you a couple of under exposed examples. These have had the under exposure corrected in post. Below is SGamut and as you can see it is a bit noisy when under exposed. That shouldn’t be a surprise, under expose and you will get noisy pictures.

SGamut with S-Log2 1 stop under (exposure corrected in post)

Below is SGamut3 and you can really see how much noisier this is than SGamut. I recommend clicking on the images to see a full screen version. You will see that as well as the noise in the greens there is more chroma noise in the blacks and greys. There also seems to be a stronger shift towards blue/green in the whites/greys in the under exposed SGamut3.

SGamut3 with S-Log3 1 stop under (exposure corrected in post)

Conclusions:

Clearly changing the gamut makes a difference to the raw output signal. In theory this shouldn’t really happen. Raw is supposed to be the unprocessed sensor output. But these test show that there is a fair bit of processing going on in the FS5 before the raw is output. It’s already known that the white balance is baked in. This is quite easy to do as changing the white balance is largely just a matter of changing the gain on the pixels that represent red and blue relative to green. This can be done before the image is converted to a color image.

What I believe I am seeing in this test is something more complex than that. I’m seeing changes in the luminance and gain levels of different colors relative to each other. So what I suspect is happening is that the camera is making some independent adjustments to the gamma of the Red, Blue and Green pixels before the raw signal is output. This is probably a hang over from adjustments that need to be made when recording S-Log2 and S-Log3 internally rather than something being done to deliberately adjust the raw output. But I didn’t design the camera so I can’t be sure that this is really the case. Only Sony would know the truth.

Does it matter?

Yes and no. If you have been using SGamut3.cine and have been getting the results you want, then, no it doesn’t really matter. I would probably avoid SGamut3. It really is very noisy in the greens and shadows compared to the other two. I would be a little concerned by the green tint in the parts of the image that should be colour free in both SGamut3 and SGamut3.cine. That would make grading a little tougher than it should be.

So my advice remains unchanged and continues to match Sony’s recommendation. This is that you should use PP7 with SGamut and S-Log2 when outputting raw. That doesn’t mean you can’t use the other Gamuts and your milage may vary, but these tests do for me at least confirm my reasons for sticking with PP7.

Both Premiere and Resolve show the same behaviour. Next I want to take a look at what happens in FCP with the ProRes Raw clips. This could prove interesting as FCP decodes and converts the FS-Raw to S-Log3 and SGamut3.cine rather than S-Log2/Sgamut by default. Whether this will make any difference I don’t know. What I do know is that having a recorder that’s converting to S-Log2 for display and software that converts to S-Log3 is very confusing as you need different LUT’s for post and the recorder if you want to use LUT’s for your monitoring. But FCP will have to wait for another day. I have paying work to do first.