Tag Archives: raw

Shooting Raw With The FS5 And Ninja V+

This came up in one of the user groups today and I thought I would repeat the information here.

One issue when using the Atomos Ninja V+ rather than an older Atomos Shogun or Inferno is that the Ninja V+ doesn’t have an internal S-Log2 option. This seems to cause some users a bit of confusion as most are aware that for the best results the FS5 MUST to be set to PP7 and S-Log2 as this is the only setting that fully optimises the sensor setup.
 
When you shoot raw, you are recording linear raw, the recordings don’t actually have any gamma as such and they are not S-log2 or S-Log3, they are raw. The S-Log2 setting in the FS5 just ensures the camera is optimised correctly. If you use the S-Log3 settings, what you record is exactly the same – linear raw, just with more noise because the camera isn’t as well optimised.
 
Any monitor or post production S-Log2 or S-Log3 settings are simply selecting the intermediate gamma that the raw will be converted to for convenience. So when the Ninja V+ states S-Log3 this is simply what the Ninja converts the raw to, before applying any LUT’s. It doesn’t matter that this is not S-Log2 because you didn’t record S-Log2, you recorded linear raw. This is simply what the Ninja V+ will use internally when processing the raw.
 
You have to convert the raw to some sort of gamma so that you can add LUT’s to it and as S-Log3 LUT’s are commonly available S-Log3 is a reasonable choice. With earlier recorders you had the option to choose S-Log2 so that when viewing the native S-Log2 output from the camera, what you saw on the monitors screen looked similar to what you saw on the FS5’s LCD screen when the FS5 was set to S-Log2. But S-Log2 is no longer included in the latest monitors, so now you only have the option to use S-Log3. But from an image quality point of view this monitor setting makes no difference and has no effect on what is recorded (the FS5 should still be set to PP7 and S-Log2).
 
In post production in the past, for consistency it would have been normal to decode the raw to S-Log2 so that everything match throughout your production pipeline from camera to post. But again, it doesn’t really matter if you now decode the raw to S-Log3 instead if you wish. There will be no significant quality difference and there is a wider range of S-Log3 LUT’s to choose from.
 
If the footage is too noisy then it is under exposed, it’s the only reason why the footage will be excessively noisy. It is true that raw bypasses the majority of the cameras internal noise reduction processes, but this only makes a small difference to the overall noise levels. 

Even with the latest Ninja V+ what is recorded when outputting raw from the FS5 is 12 bit linear raw.
 
12 bit Linear raw is a somewhat restricted format. 12 bits is not a lot of code values to record a high dynamic range linear signal. This is why most cameras use log recording for wide dynamic ranges, log is much more efficient and distributes the available recording data in a way very sympathetic to the way human vision works.
 
In practice what this means is that the 12 bit linear raw has LOTS of data and image information in the upper mid range and the very brightest  highlights. But relatively very little picture information in the lower mid range and shadows. So if it is even the slightest bit under exposed the image will degrade very quickly as for each stop yu go down in brightness you halve the amount of image information you have.
 
In an underexposed image the noise will be very coarse in appearance and the image will be difficult to grade. You really do need to expose the raw nice and bright and because of the way the data is distributed, the brighter you can get away with the better. Never be afraid of exposing linear raw “just a little bit brighter”. It is unlikely to severely bite you if you are over exposed but highly likely to bite you if it is even a fraction under.
 
The 12 bit linear raw from the FS5 is not going to be good in low light or when shooting scenes with large shadow areas unless you can expose bright so that you are bring your levels down in post. If you have to bring any levels up in post the image will not be good.
 
Raw is not a magic bullet that makes everything look great. Just as with S-Log it must be exposed carefully and 12 bit linear raw is particularly unforgiving – but when exposed well it is much better than the internal 8 bit log recordings of the FS5 and can be a fantastic format to work with, especially given the low cost of an FS5.
 
I recommend going back to basics and using a white card to measure the exposure. If monitoring the raw via S-Log3 the white card needs to be exposed around 70%. If using a light meter with the FS5 set the light meter to 640 ISO.
 
If you do want to use a LUT on the Ninja to judge your exposure use a LUT with a -1.5 stop offset. The darker LUT will encourage you to expose the raw brighter and you will find the footage much easier to grade. But it should also be considered that it is also quite normal to add a small amount of selective noise reduction in post production when shooting raw. 

FX6 Firmware Update Adds 120fps Raw.

Screenshot-2021-05-21-at-09.37.54-1024x160 FX6 Firmware Update Adds 120fps Raw.

Sony have just released firmware version 1.10 for the ILME-FX6. This firmware update adds the ability to output raw at 100p and 120p to a suitable external raw recorder.  The only raw recorder that can record the 100 and 120fps raw is the Atomos Ninja V+ which will be available very soon. This is a welcome update for the FX6 and it also includes some “stability fixes” so I recommend that all users update their cameras.

I’ve found the most reliable way to update the camera is to download the SD Card/CFExpress card version and place the Bodydata.dat file on an SD card. This is listed on the Sony site as “ILME-FX6 Update Guide(SD Card/CFexpress card. Put the SD card in the BOTTOM of the cameras 2 SD card slots (slot B) and then start the update from the Maintenance, Version, Version Up  setting in the cameras full menu. You should insert a fully charged battery and also connect mains power when doing the update.

You will find the various firmware updaters here: https://www.sony.com/electronics/support/camcorders-and-video-cameras-interchangeable-lens-camcorders/ilme-fx6v/downloads 

The Atomos Ninja V+ is an upgraded version of the Ninja V. It’s the same size and shape but has much more internal processing power. The extra processing allows it to record 4K 120fps raw or 8K 30p raw (it will be interesting to know which cameras are going to be outputting 8K raw). I really like the Ninja V, it’s small, compact and packed with useful features for not a lot of money. To record the raw from the FX6 do remember that you have to add the AtomX SDI module.

How Good Is The Raw From An FX9 Compared To The F55?

This is a very good question that came up in one of the F5/F55/FX9 facebook groups that I follow. The answers are also mostly relevant to users of the FX6, FX3 and the A7SIII.

There were two parts to it: Is the FX9’s raw out as good as the raw from the F5/F55 and then – do I really need raw.
 
In terms of image quality I don’t think there is any appreciable difference, going between the raw from an FX9 and the raw from an F5/F55 is a sideways step.

The F5/F55 with either Sony Raw or X-OCN offer great 16 bit linear raw in a Sony MXF package. The files are reasonably compact, especially if you are using the R7 and X-OCN. There are some compatibility issues however and you can’t use the Sony Raw/X-OCN in FCP-X and the implementation in Premier Pro is poor.

The 16 bit out from the FX9/XDCA-FX9 gets converted to 12 bit log raw by the Atomos recorders, currently the only recording options – but in reality you would be extremely hard pushed to really see any difference between 16 bit linear raw and 12 bit log raw from this level of camera.
 
Recording the 12 bit log raw as ProRes Raw means that you are tied to just FCP-X, Premiere Pro (poor implementation again) and Scratch. The quality of the images that can be stored in the 2 different raw formats is little different, 16 bit linear has more code values but distributed very inefficiently. 12 bit log raw has significantly fewer code values but the distribution is far more efficient.  AXS media is very expensive, SSD’s are cheap. AXS card readers are expensive, SSD adapters are cheap. So there are cost implications.

Personally I feel the reduced noise levels from the FX9 makes footage from the FX9 more malleable than footage from the F5/F55 and if you are shooting in FF6K there is more detail in the recordings, even though they are downsampled to 4K raw. But the FF6K will have more rolling shutter compared to an F55/F5.

Working with Sony Raw/X-OCN in Resolve is delightfully easy, especially if you use ACES and it’s a proper grading package. If you want to work with ProResRaw in Resolve you will need to use Apple Compressor or FCP-X to create a demosaiced log file, which even if you use ProRes444 or XQ not the same as working from the original raw file. For me that’s the biggest let down. If I could take ProResRaw direct into Resolve I’d be very happy. But it is still perfectly possible to get great footage from ProResRaw by transcoding if you need to.

As to whether you need raw, only you can answer that fr yourself. There are many factors to consider.  What’s your workflow, how are you delivering the content. Will the small benefit from shooting raw actually be visible to your clients?
 
Are you capturing great content – in which case raw may give you a little more, or are you capturing less than ideal material – in which case raw isn’t going to be a get out of jail card. Raw of any flavour works best when it’s properly exposed and captured well.

I would suggest anyone trying to figure out whether they need raw or not to start by to grading the XAVC-I from the FX9 and see how far you can push that,  then compare it to the raw. I think may be surprised by how little difference there is, XAVC-I S-Log3 is highly gradable and if you can’t get the look you want from the XAVC-I raw isn’t going to be significantly different. It’s not that there is anything wrong with raw, not at all. But it does get rather over sold as a miracle format that will transform what you can do. It won’t perform those miracles, but if everything else has been done to the highest possible standards then raw does offer the very best that you can get from these cameras.
 
As a middle ground also consider non raw ProRes. Again the difference between that and XAVC-I is small, but it may be that whoever is doing the post production finds it easier to work with. And the best bit is there are no compatibility issues, it works everywhere.

But really my best recommendation is to test each workflow for yourself and draw your own conclusions. I think you will find the differences between each much smaller than you might assume. So then you will need to decide which works for you based on cost/effort/end result.
 
Sometimes best isn’t always best! Especially if you can get to where you need to be more easily as an easy workflow gives you more time to spend on making it look the way you want rather than fussing with conversions or poor grading software.

Atomos Adds Raw Over SDI For The Ninja V via the AtomX.

I know this is something A LOT of people have been asking for. For a long time it has always seemed odd that only the Shogun 7 was capable of recording raw from the FX9 and then the FX6 while the the little Ninja V could record almost exactly the same raw form the A7SIII.

Well the engineers at Atomos have finally figured out how to pass raw via the AtomX SDI adapter to the Ninja V. The big benefit of course being the compact size of the Ninja V.

There are a couple of ways of getting the kit you need to do this.

If you already have a Ninja V (they are GREAT little monitor recorders, I’ve taken mine all over the world, from the arctic to Arabian deserts) you simply need to buy an AtomX SDI adapter and once you have that buy a raw licence from the Atomos website for $99.00.

If you don’t have the Ninja V then you can buy a bundle called the “Pro Kit” that includes everything you need including a Ninja V with the raw licence pre-installed, The AtomX SDI adapter, a D-Tap power adapter cable, a mains power supply and a sun hood. The cost of this kit will be around $950 USD or £850 GBP + tax, which is a great price.

On top of that you will need to buy suitable fast SSD’s.

Like the Shogun 7 the Ninja V can’t record the 16 bit raw from the FX6 or FX9 directly, so Atomos take the 16 bit linear raw and convert it using a visually lossless process to 12 bit log raw. 12 bit log raw is a really nice raw format and the ProResRaw codec helps keep the files sizes nice and manageable.

This is a really great solution for recording raw from the FX6 and FX9. Plus if you already have an A7SIII you can use the Ninja V to record via HDMI from that too.

Here’s the press release from Atomos:

c6c43288-9b4b-4ac7-8889-16c01dbb6300 Atomos Adds Raw Over SDI For The Ninja V via the AtomX.
f8cd773f-872b-4e63-a7f3-a53142662664 Atomos Adds Raw Over SDI For The Ninja V via the AtomX.
The Atomos Ninja V Pro Kit is here to equip you with increased
professional I/O, functionality and accessories.

The Ninja V Pro Kit has been designed to bridge the gap between compact cinema and mirrorless cameras that can output RAW via HDMI or SDI. Pro Kit also pushes these cameras’ limits, recording up to 12-bit RAW externally on the Ninja’s onboard SSD. Additionally, Pro Kit provides the ability to cross covert signals providing a versatile solution for monitoring, play out and review.
 
7ae96b67-7f27-4f54-b637-5bed0cb685d5 Atomos Adds Raw Over SDI For The Ninja V via the AtomX.
What comes in the Pro Kit?
  • Ninja V Monitor-Recorder with pre-activated RAW over SDI
  • AtomX SDI Module
  • Locking DC to D-Tap cable to power from camera battery
  • AtomX 5″ Sunhood
  • DC/Mains power with international adaptor kit
Ninja V Pro Kit offers a monitor and recording package to cover a wide range of workflows.
097d35da-ecfb-4acd-a43f-45a0098e9907 Atomos Adds Raw Over SDI For The Ninja V via the AtomX.

Why choose Ninja V Pro Kit?
  • More powerful and versatile I/O for Ninja V – Expand your Ninja V’s capability with the Pro Kit with the ability to provide recordings in edit-ready codecs or as proxy files from RED or ARRI cameras.
  • Accurate and reliable daylight viewable HDR or SDR – To ensure image integrity, the AtomX 5″ Sunhood is included and increases perceived brightness under challenging conditions or can be used to dial out ambient light to increase the view in HDR
  • HDMI-to-SDI cross conversion – HDMI or SDI connections can be cross converted, 4K to HD down converts RAW to video signals to connect to other systems without the need for additional converters.
  • Record ProRes RAW via SDI to selected cameras*:
a9004691-3a6a-43eb-a2e3-bcced1e9fb74 Atomos Adds Raw Over SDI For The Ninja V via the AtomX.
  • Three ways to power your Ninja:
    – DC power supply – perfect for in the studio.
    – DTap cable – perfect for on-set, meaning your rig can run from a single power source.
    – Optional NPF battery or any four-cell NPF you might have in your kit bag. 
c3522982-3d97-464b-976f-50cdf918f2b9 Atomos Adds Raw Over SDI For The Ninja V via the AtomX.

The ProRes RAW Advantage
ProRes RAW is now firmly established as the new standard for RAW video capture, with an ever-growing number of supported HDMI and SDI cameras. ProRes RAW combines the visual and workflow benefits of RAW video with the incredible real-time performance of ProRes. The format gives filmmakers enormous latitude when adjusting the look of their images and extending brightness and shadow detail, making it ideal for HDR workflows. Both ProRes RAW and the higher bandwidth, less compressed ProRes RAW HQ are supported. Manageable file sizes speed up and simplify file transfer, media management, and archiving. ProRes RAW is fully supported in Final Cut Pro, Adobe Premiere Pro, Avid Media Composer 2020.10 update, along with a collection of other apps including ASSIMILATE SCRATCH, Colorfront, FilmLight Baselight, and Grass Valley Edius.
 
38031027-d6e9-4d58-b3aa-8672ead94c51 Atomos Adds Raw Over SDI For The Ninja V via the AtomX.

Existing Ninja V and AtomX SDI module owners
While the Pro Kit offers a complete bundle, existing Ninja V owners can enhance their equipment to the same level by purchasing the AtomX SDI module for $199, and the New RAW over SDI and HDMI RAW to SDI video feature can also be added to the Ninja V via separate activation key from the Atomos website for $99. 

Existing AtomX SDI module owners will receive the SDI < > HDMI cross conversion for 422 video inputs in the 10.61 firmware update for Ninja V update. You will also be able to benefit from RAW over SDI recording with the purchase of the SDI RAW activation key. This feature will be available from the Atomos website in February 2021.
 
ecd0a301-71e2-42ac-877a-74b52bea63a0 Atomos Adds Raw Over SDI For The Ninja V via the AtomX.
 
Special Offer for Pro Kit buyers
The first batch of Ninja V Pro Kits will include a FREE Atomos CONNECT in the box.
Connect allows you to start streaming at up to 1080p60 directly from your Ninja V!
Learn more about Connect here.
 

Availability
The Ninja V Pro Kit is available to purchase from your local reseller.
Find your local reseller here.

$949 USD
EX LOCAL TAXES

*Selected cameras only – RAW outputs from Sony’s FS range (FS700, FS5, FS7) are NOT supported on Ninja V with AtomX SDI Module and RAW Upgrade. Support for these cameras is ONLY available on Shogun 7.

ProResRaw Update For Shogun 7 and FX6

132778118_3883714468314721_5996857821174714787_o-600x400 ProResRaw Update For Shogun 7 and FX6Atomos have release a firmware update for the Shogun 7 to correctly implement raw recording from the FX6 at up to 60fps.

AtomOS 10.43 is a free update for the Shogun 7 that enables up to DCI 4Kp60 full-frame ProRes RAW recording from Sony’s FX6 camera!
 
Now available: Apple ProRes RAW recording support for Sony’s new FX6 professional camera with full-frame image sensor; which natively outputs RAW over SDI. This is all made possible with the Atomos Shogun 7 AtomOS 10.43 update which now allows users to record pristine ProRes RAW images at up to DCI 4Kp60. The resulting images have amazing detail and a high degree of latitude to utilize in post-production – optimal for HDR finishing or to give greater flexibility in SDR (Rec.709).
 
If you are a Shogun 7 user you can update your firmware here: https://bit.ly/2VTDUCz
For more information on this powerful combination head to: https://bit.ly/38u2QGX

Raw Isn’t Magic. With the right tools Log does it too.

Raw can be a brilliant tool, I use it a lot. High quality raw is my preferred way of shooting. But it isn’t magic, it’s just a different type of recording codec.
 
All too often – and I’m as guilty as anyone – people talk about raw as “raw sensor data” a term that implies that raw really is something very different to a normal recording. In reality it’s really not that different. When shooting raw all that happens is that the video frames from the sensor are recorded before they are converted to a colour image. A raw frame is still a picture, it’s just that it’s a bitmap image made up of brightness values, each pixel represented by a single brightness code value rather than a colour image where each location in the image is represented by 3 values one for each of Red, Green and Blue or Luma, Cb and Cr.

As that raw frame is still nothing more than a normal bitmap all the cameras settings such as white balance, ISO etc are in fact baked in to the recording. Each pixel only has one single value and that value will have been determined by the way the camera is setup. Nothing you do in post production can change what was actually recorded. Most CMOS sensors are daylight balanced, so unless the camera adjusts the white balance prior to recording – which is what Sony normally do – your raw recording will be daylight balanced.

Modern cameras when shooting log or raw also record metadata that describes how the camera was set when the image was captured. 

So the recorded raw file already has a particular white balance and ISO. I know lots of people will be disappointed to hear this or simply refuse to believe this but that’s the truth about a raw bitmap image with a single code value for each pixel and that value is determined by the camera settings.

This can be adjusted later in post production, but the adjustment range is not unlimited and it is not the same as making an adjustment in the camera. Plus there can be consequences to the image quality if you make large adjustments. 

Log can be also adjusted extensively in post too. For decades feature films shot on film were scanned using 10 bit Cineon log (which is the log gamma curve S-Log3 is based on) and 10 bit log used for post production until 12 bit and then 16 bit linear intermediates came along like OpenEXR. So this should tell you that actually log can be graded very well and very extensively.

But then many people will tell you that you can’t grade log as well as raw. Often they will give photographers as an example where there is a huge difference between what you can do with a raw photo and a normal image. But we also have to remember this is typically comparing what you can do with a highly compressed 8 bit jpeg file and an often uncompressed 12 or 14 bit raw file. It’s not a fair comparison, of course you would expect the 14 bit file to be better.

The other argument often given is that it’s very hard to change the white balance of log in post, it doesn’t look right or it falls apart. Often these issues are nothing to do with the log recording but more to do with the tools being used.

When you work with raw in your editing or grading software you will almost always be using a dedicated raw tool or raw plugin designed for the flavour of raw you are using. As a result everything you do to the file is optimised for the exact flavour of raw you are dealing with. It shouldn’t come as a surprise to find that to get the best from log you should be using tools specifically designed for the type of log you are using. In the example below you can see how Sony’s Catalyst Browse can perfectly correctly change the white balance and exposure of S-log material with simple sliders just as effectively as most raw formats.
 
Screenshot-2020-11-27-at-17.14.07 Raw Isn't Magic. With the right tools Log does it too.
On the left is the original S-Log3 clip with the wrong white balance (3200K) and on the left is the corrected image. The only corrections made are via the Temperature slider and exposure slider.
 
Applying the normal linear or power law (709 is power law) corrections found in most edit software to Log won’t have the desired effect and basic edit software rarely has proper log controls. You need to use a proper grading package like Resolve and it’s dedicated log controls. Better still some form of colour managed workflow like ACES where your specific type of log is precisely converted on the fly to a special digital intermediate and the corrections are made to the intermediate file. There is no transcoding, you just tell ACES what the footage was was shot on and magic happens under the hood. Once you have done that you can change the white balance or ISO of log material in exactly the same way as raw. There is very, very little difference.
 
Screenshot-2020-11-27-at-17.29.27 Raw Isn't Magic. With the right tools Log does it too.
The same S-Log3 clip as in the above example, this time in DaVinci Resolve using ACES. The only corrections being made are via the Temp slider for the white balance change and the Log-Offset wheel which in ACES provides a precise exposure adjustment.
 
When people say you can’t push log, more often than not it isn’t a matter of can’t, it’s a case of can – but you need to use the right tools.
 
After-correction-450x253 Raw Isn't Magic. With the right tools Log does it too.
This is what log shot with completely the wrong white balance and slightly over exposed looks like after using nothing but the WB and ISO sliders in Catalyst Browse. I don’t believe raw would have looked any different.
 
Less compression or a greater bit depth are where the biggest differences between a log or raw recording come from, not so much from whether the data is log or raw.  Don’t forget raw is often recorded using log, which kind of makes the “you can’t grade log” argument a bit daft.
 
Camera manufactures and raw recorder manufacturers are perfectly happy to allow everyone to believe raw is magic and worse still, let people believe that ANY type of raw must be better than all other types of recordings. Read though any camera forum and you will see plenty of examples of “it’s raw so it must be better” or “I need raw because log isn’t as good” without any comprehension of what raw is and how in reality it’s the way the raw is compressed and the bit depth that really matters.

If we take ProRes Raw as an example: For a 4K 24/25fps file the bit rate is around 900Mb/s. For a conventional ProRes HQ file the bit rate is around 800Mb/s. So the file size difference between the two is not at all big.
 
But the ProRes Raw file only has to store around 1/3 as many data points as the component ProResHQ file. As a result, even though the ProRes Raw file often has a higher bit depth, which in itself usually means better a better quality recording, it is also much, much less compressed and as a result will have fewer artefacts. 

It’s the reduced compression and deeper bit depth possible with raw that can lead to higher quality recordings and as a result may bring some grading advantages compared to a normal ProRes or other compressed file. The best bit is there is no significant file size penalty. So you have the same amount of data, but you data should be of higher quality. So given that you won’t need more storage, which should you use? The higher bit depth less compressed file or the more compressed file?

But, not all raw files are the same. Some cameras feature highly compressed 10 bit raw, which frankly won’t be any better than most other 10 bit recordings as you are having to do all the complex math to create a colour image starting with just 10 bit. Most cameras do this internally at at least 12 bit. I believe raw needs to be at least 12 bit to be worth having.

If you could record uncompressed 12 bit RGB or 12 bit component log from these cameras that would likely be just as good and just as flexible as any raw recordings. But the files would be huge. It’s not that raw is magic, it’s just that raw is generally much less compressed and  depending on the camera may also have a greater bit depth. That’s where the benefits come from.

Raw Myths. You Can’t Change The white Balance Of the Camera Or ISO in Post.

It’s amazing how often people will tell you how easy it is to change the white balance or adjust the ISO of raw footage in post. But can you, is it really true and is it somehow different to changing the ISO or white balance of Log footage?

Let’s start with ISO. If ISO is sensitivity, or the equivalent of sensitivity how on earth can you change the sensitivity of the camera once you get into post production. The answer is you can’t.

But then we have to consider how ISO works on an electronic camera. You can’t change the sensor in a video camera so in reality you can’t change how sensitive an electronic camera is (I’m ignoring cameras with dual ISO for a moment). All you can do is adjust the gain or amplification applied to the signal from the sensor.  You can add gain in post production too. So, when you adjust the exposure or using the ISO slider for your raw footage in post all you are doing is adjusting how much gain you are adding. But you can do the same with log or any other gamma. 

One thing that makes a difference with raw is that the gain is applied in such a way that what you see looks like an actual sensitivity change no matter what gamma  you are transforming the raw to. This makes it a little easier to make changes to the final brightness in a pleasing way. But you can do exactly the same thing with log footage.  Anything you do in post must be altering the recorded file, it can never actually change what you captured.

Changing the white balance in post: White Balance is no different to ISO, you can’t change in post what the camera captured. All you can do is modify it through the addition or subtraction of gain.

Think about it. A sensor must have a certain response to light and the colours it sees depending on the material it’s made from and the colour filters used. There has to be a natural fixed white balance or a colour temperature that it works best at.

The Silicon that video sensors are made from is almost always more sensitive at the red end of the spectrum than the blue end. So as a result almost all sensors tend to produce the best results with light that has a lot of blue (to make up for the lack of blue sensitivity) and not too much red. So most cameras naturally perform best with daylight and as a result most sensors are considered daylight balanced.

If a camera produces a great image under daylight how can you possibly get a great image under tungsten light without adjusting something? Somehow you need to adjust the gain of the red and blue channels.

Do it in camera and what you record is optimised for your choice of colour temperature at the time of shooting. But you can always undo or change this in post by subtracting or adding to whatever was added in the camera.

If the camera does not move away from its native response then if you want anything other than the native response you will have to do it in post and you will be recording at the cameras native white balance. If you want a different colour temp then you need to add or subtract gain to the R & B channels in post to alter it.

Either way what you record has a nominal white balance and anything you do in post is skewing what you have recorded using gain. There is no such thing as a camera with no native white balance, all cameras will favour one particular colour temperature. So even if a manufacturer claims that the white balance isn’t baked in what they mean is they don’t offer the ability to make any adjustments to the recorded signal. If you want the very best image quality, the best method is to adjust at the time of recording. So, as a result a lot of camera manufacturers will skew the gain of the red and blue channels of the sensor in the camera when shooting raw as this optimises what you are recording. You can then skew it again in post should you want a different balance. 

With either method if you want to change the white balance from what was captured you are altering the gain of the red and blue channels. Raw doesn’t magically not have a white balance, so shooting with the wrong white balance and correcting it in post is not something you want to do. Often you can’t correct badly balanced raw any better than you can correct  incorrectly balanced log.

How far you can adjust or correct raw depends on how it’s been compressed (or not), the bit depth, whether it’s log or linear and how noisy it is. Just like a log recording really, it all depends on the quality of the recording. 

The big benefit raw can have is that the amount of data that needs to be recorded is considerably reduced compared conventional component or RGB video recordings.  As a result it’s often possible to record using a greater bit depth or with much less compression. It is the greater bit depth or reduced compression that really makes a difference. 16 bit data can have up to 65,536 luma gradations, compare that to the 4096 of 12 bit or 1024 of 10 bit and you can see how a 16 bit recording can have so much more information than a 10 bit one. And that makes a difference. But 10 bit log v 10 bit raw, well it depends on the compression, but well compressed 10 bit log will likely outperform 10 bit raw as the all important colour processing will have been done in the camera at a much higher bit depth than 10 bit.

ProResRaw Now In Adobe Creative Cloud Mac Versions!

Hooray! Finally ProRes Raw is supported in both the Mac and Windows versions of Adobe Creative Cloud. I’ve been waiting a long time for this. While the FCP workflow is solid and works, I’m still not the biggest fan of FCP-X. I’ve been a Premiere user for decades although recently I have switched almost 100% to DaVinci Resolve. What I would really like to see is ProRes Raw in Resolve, but I’m guessing that while Black Magic continue to push Black Magic Raw that will perhaps not come. You will need to update your apps to the latest versions to gain the ProRes Raw functionality.

ProResRaw for Windows Released (beta)

Some time ago Atomos indicated that you would be able to use ProResRaw in Adobe Premiere. Well – now you can, on a Windows machine at least.

Apple have just released a beta version of ProResRaw for Windows that is designed to work with Adobe’s creative suite applications including Premiere, After Effects, Premiere Pro and Premiere Rush.

I haven’t been able to try it yet as I’m mainly Mac based. But if you want to give it a go you can download the beta from Apple by clicking here.

Edit: It appears that as well as this plugin you may need to be running the latest beta versions of the Adobe applications. Please don’t ask me where to get the beta applications as I have no idea.

Don’t Convert Raw to ProRes Before You Do Your recording.

This comes up again and again, hence why I am writing about it once again.
Raw should never be converted to log before recording if you want any benefit from the raw. You may as well just record the 10 bit log that most cameras are capable of internally. Or take log and output it via the cameras 10 bit output (if it has one) and record that directly on the ProRes recorder. It doesn’t matter how you do it but if you convert between different recording types you will always reduce the image quality and this is as bad a way to do it as you can get. This mainly relates to cameras like the PXW-FS7. The FS5 is different because it’s internal UHD recordings are only 8 bit, so even though the raw is still compromised by converting it to ProRes log, this can still be better than the internal 8 bit log.
S-Log like any other log is a compromise recording format. Log was developed to squash a big dynamic range into the same sized recording bucket as would normally be used for conventional low dynamic range gammas. It does this by discarding a lot of tonal and textural information from everything brighter than 1 stop above middle grey, instead of the amount of data doubling for each stop up you go in exposure, it’s held at a constant amount. Normally this is largely transparent as human vision is less acute in the highlight range, but it is still a compromise.
The idea behind Linear raw is that it should give nothing away, each stop SHOULD contain double the data as the one below. But if you only have 12 bit data that would only allow you to record 11 stops of dynamic range as you would quickly run out of code values. So Sony have to use floating point math or something very similar to reduce the size of each stop by diving down the number of code values each stop has. This has almost no impact on highlights where you start off with 100’s or 1000’s values but in the shadows where a stop may only have 8 or 16 values dividing by 4 means you now only have 2 or 4 tonal levels. So once again this is a compromise recording format. To record a big dynamic range using linear what you really need is 16 bit data.
In summary so far:
S-Log reduces the number of highlight tonal values to fit it a big DR in a normal sized bucket.
Sony’s FSRaw, 12 Bit Linear reduces the number of tonal Values across the entire range to fit it in a compact 12 bit recording bucket, but the assumption is that the recording will be at least 12 bit. The greatest impact of the reduction is in the shadows.
Convert 12 bit linear to 10 bit S-Log and now you are compromising both the highlight range and the shadow range. You have the worst of both, you have 10 bit S-Log but with much less shadow data than the S-log straight from the camera. It’s really not a good thing to do and the internally generated S-Log won’t have shadows compromised in the same way.
If you have even the tiniest bit of under exposure or you attempt to lift the shadows in any way this will accentuate the reduced shadow data and banding is highly likely as the values become stretched even further apart as you bring them up the output gamma range.
If you expose brightly and then reduce the shadows this has the effect of compressing the values closer together or pushing them further down the output curve, closing them together as they go down the output gamma range, this reduces banding. This is one of the reasons why exposing more brightly can often help both log and raw recordings. So a bit of over exposure might help, but any under exposure is really, really going to hurt. Again, you would probably be better off using the internally generated S-Log.
To make matters worse there is also often an issue with S-Log in a ProRes file.
If all that is not enough there is also a big problem in the way ProRes files record S-Log. S-Log should always be recorded as full range data. When you record an internal XAVC file the metadata in the clips tells the edit or grading software that the file is full range. Then when you apply a LUT or do your grading the correct transforms occur and all shadow textures are preserved. But ProRes files are by default treated as legal range files. So when you record full range S-Log inside a ProRes file there is a high likelihood that your edit or grading software will handle the data in the clip incorrectly and this too can lead to problems in the shadows including truncated data, clipping and banding, even though the actual recorded data may be OK. This is purely a metadata issue, grading software such as DaVinci resolve can be forced to treat the ProRes files as full range.
 
 
more on S-Log and ProRes files here: http://www.xdcam-user.com/2019/03/sonys-internal-recording-levels-are-correct/