Category Archives: cameras

Sony naming system

Here’s a little insight into what some of the Sony product prefixes might mean. These may not be 100% correct but this is what I understand them to mean. There are also many exceptions to the standard naming convention, so use this as a guide only.

First letter: P = Professional, B = Broadcast, U = Utility,  D = Digital, H = Studio/OB,  L = LCD, O = Optical

Second letter: V = Video (means video tape if camera), M = SxS Memory, D = Optical Disc, X = XQD/SD/SxS(solid state media or digital workflow), S = System, D = Multi format, P = Projector or Printer, R = Remote Control, W = wireless

Third letter: (or 3 + 4th): W = Writer( deck or camera that can also record/camcorder), M = Monitor, C = Camera(no recording capability) CU = Camera Control Unit, CP = Compact camera(no recording), X = HD, Z = 4K, D = Digital (HDSDI?),  A = Archive

Then after the 3/4 letter prefix: F = Film (digital cinema, 16 bit raw when raw included), FS = Film Style (large sensor, 12 bit raw when raw included), X = HD from factory (often but not always upgradable to 4K) , Z is 4K from factory.  NX = AVCHD

The number of digits after the letters used to be significant. 2 digits was a product without an imager (PMW-50, PMW-EX30) 3 digits was a camera (PMW-200, PMW-500) and 4 digits was a deck (PMW-HD1500, F1600). However recently cameras have any number of digits.

 

For example PXW-X200:

P = Professional   X = Solid state media   W = Writer –  X = HD camcorder.

Example BVW-400 (Betacam SP camcorder – remember those!)

B = Broadcast  V = Video Tape  W = Writer

Example PXW-FS7

P = Professional X = Solid State Media  W = Writer – FS = Film Style.

Example PMW-F55 (Slight odd-ball this one as it was the very first XAVC camera, perhaps should really have been a PXW-F55 although as it’s SxS and has the XDCAM codec PMW works too).

P = Professional  M = SxS Memory  W = Writer – F = Film (Digital Cinema).

Example PDW-700 (Optical disc camcorder)

P = Professional  D = Disk  W = Writer.

Example PMW-300

P = Professional  M = SxS Memory W = Writer.

Some oddballs:

F65 = F65 Ultimate digital cinema camera, no prefix and a 35mm sensor, not 65mm as the name suggests. Other “F” only cameras used the sensor size for the name. The F35 had a super 35mm sensor and F23 which had a 2/3″ sensor.

CBKZ = Software upgrade option.

CBK = Camera build kit

HDW = HDCAM Writer.

SRW = HDCAM SR Writer.

DSR = Digital DVCAM camera/camcorder/deck.

I don’t know what the HXR prefix stands for, this line of normally AVCHD solid state camcorders used to come from a different group within Sony to the broadcast group. These two groups now work together so the product numbering is now more consistent, but there are still many product names that don’t follow the convention.

It’s interesting to note that there are very few “Broadcast” B** products these days except for BVM (Broadcast Video Monitor) monitors. Most camcorders are now P** even if they are most definitely broadcast cameras, for example the PXW-X500.

If anyone would like to add to this list or correct any errors please let me know by adding a comment. Any input/additions are most welcome!

Auto Knee when shooting with Rec-709.

Like many cameras the Sony PXW-FS7, PMW-F5 and F55 use an automatic knee circuit to help the camera handle strong highlights or overexposure when shooting using standard gamma curves such as Rec-709 (STD gamma 5). On some ENG cameras there is a very similar function  called DCC (Dynamic Contrast Compensation) which is often selected via the Camera/Bars switch.

On the FS7, F5/F55 and many others the Auto Knee is on by default out of the factory. It can be turned on and off in the cameras paint settings. In most normal shooting situations, if you are correctly exposed the auto knee does a good job of bringing bright highlights down out of clipping.  The auto knee threshold is at around 90% brightness. Expose with objects brighter than 90% in your scene and the auto knee starts to kick in.

The correct exposure for white, such as a 90% reflectivity white card or white piece of paper in Rec-709 is 90%. Skin tones, plants, walls, roads and in fact most objects will normally be below white or below 90%. However direct light sources, such as the sky or direct reflections such as shiny car body work will be brighter than white. So the knee should only ever effect objects brighter than white if you are exposed correctly.  So for most situations it should not effect skin tones and the majority of the scene, just the bright highlights.

The auto knee detects highlight levels above 90% and tries to keep the highlight range below clipping by adding contrast compression to the highlights. The amount of compression depends on how strong the highlights are. As a result the auto knee effect will vary with exposure. If you have a scene with only a few highlights there will be some knee compression and it’s effect will only be seen above approx 90%. If you then open the aperture or have a lot of highlights the auto knee will increase the highlight compression to compensate. If the highlight range becomes very large then the knee will not only increase the amount of compression but also lower the knee point so more and more of the upper exposure range is effected by the knee. In extreme cases the knee point may get as low as 70-80% and this then starts to effect skin tones.

To prevent rapid fluctuations of the contrast in the highlight range the auto knee has a slight delay. This can result in a vicious circle where you open the iris a bit to help brighten the shot. The shot gets brighter. Then a couple of seconds later you look at the shot again and because the knee has now adjusted the highlights after it’s delay period it looks different to how it looked at the moment you made the initial adjustment. So you adjust again…. then the knee adjusts again and so on. Sometimes this lag can make it tricky to get your highlights to look exactly how you want.

Another common auto knee effect is to see the brighter parts of an entire image change as a result of a change in only a small part of the scene. A typical example would be an interview with a window in the background. As the highlight level in the bright window changes, perhaps as the sun comes and goes from behind passing clouds, the knee tries to compensate and all of the highlights in the scene go up and down in brightness whether they are over exposed or not. This looks very strange and can ruin an otherwise good looking shot.

If you are shooting in a studio against a white background the auto knee makes it impossible to get a brilliantly bright uniformly clipped white background. You increase your exposure to make the white background extra bright and because that white is now above 90% the auto knee treats it as a highlight and tries to control it’s brightness. The more you open the aperture the more the knee pulls down the white background, it never reaches clipping. Eventually you get to the point where the knee starts to effect the skin tones but your white backdrop still isn’t clipped. The image doesn’t look great.

In these cases the best thing to do is to turn off the Auto Knee. If you go into the paint settings you will find the knee settings. In most cases leave the knee on (except perhaps for the white studio example), but turn OFF the auto knee function. The fixed level knee will still give you a good highlight range but eliminate the pumping or other variable knee effects. Note that the knee options have no effect if using a Hypergamma or log. They only come into paly with standard gamma.

Raw and the PXW-FS5

This isn’t a “how to” guide. There are many different recorders that can be used to record raw from the FS5 and each would need it’s own user guide. This is an overview of what raw is and how raw recording works to help those that are a bit confused, or not getting the best results.

First of all – you need to have the raw upgrade installed on the FS5 and it must be set to output raw. Then you need a suitable raw recorder. Just taking the regular SDI or HDMI output and recording it on an external recorder is not raw.

Raw is raw data direct from the cameras sensor with very little image processing. It isn’t even a color image, it won’t become color until some external processing, often called “De-Bayer” is done to convert the raw data to a color image.

For raw to work correctly the camera has to be set up just right. On the FS5 you should use Picture Profile 7. Don’t try and use any other profile, don’t try and shoot without a profile. You must use Picture Profile 7 at it’s factory default settings. In addition don’t add any gain or change the ISO from 3200. Even if the scene is a dark one, adding gain will not help and it may in fact degrade the recorded image.

White balance is set using the appropriate SGamut + color temperature preset chosen from within Picture Profile 7, there are only 3 to choose from for S-Gamut, but with a raw workflow you will normally fine tune the white balance in post. No other color matrix or white balance method should be used. Trying to white balance any other way may result in the sensor data being skewed or shifted in a way that makes it hard to deal with later on.

All of the above is done to get the best possible, full dynamic range data off the sensor and out of the camera.

If you are viewing the S-Log2 (ie don’t have viewfinder gamma assist enabled) then the exposure level that Sony recommend is to have a white card at 60%. So consider setting the zebras to 60%. Don’t worry that this may look a bit dark or appear to be a low level, but that’s the level you should start with… More about exposure later on.

This raw data is then passed down the SDI cable to the external recorder. The external recorder will then process it, turn it into a color signal (de-bayer) and add a gamma curve so that it can be viewed on the recorders screen. Exactly what it will look like on the monitor screen will depend on how the recorder is set up. IF the recorder is set to show S-Log2, then the recorders screen and the FS5’s LCD should look similar. However you might find that it looks very different to what you are seeing on the FS5’s LCD screen. This is not unexpected. If the recorder is setup to convert the raw to Rec-709 for display then the image on the recorder will be brighter and show more contrast, in fact it should look “normal”.

Under the surface however, the external raw recorder is going to be doing one of two things (normally at least). It’s either going to be recording the raw data coming from the camera as it is, in other words as raw. Or it will be converting the raw data to S-Log2 and recording it as a conventional ProRes or DNxHR video file. Either way when you bring this footage in to post production it will normally appear as a flat, low contrast S-Log2 image rather than a bright, contrasty rec-709 image. So understand that the footage will normally need to be graded or have some other changes made to it to look nice.

Recording the actual raw data will give you the best possible information that you can get from the FS5 to work with in post production. The downside is that the files will be huge and will take a fair amount of processing power to work with. Recording a ProRes or DNxHR video file with S-Log2 gamma is second best. You are throwing away a bit of image quality (going from 12 bit linear down to 10 bit log) but the files should still be far superior to the 8 bit UHD internal recordings or even an external recording done via the HDMI which is also limited to 8 bit in UHD.

Most raw recorders have the ability to add a LUT – Look Up Table – to the image viewed on the screen. The purpose of the LUT is to convert the S-Log2/raw to a conventional gamma such as Rec-709 so that the picture looks normal. If you are using a LUT then the normal way to do things is to view the normal looking picture on the recorders screen while the recorder continues to record S-Log2 or raw. This is useful as the image on the screen looks normal so it is easier to judge exposure. With a 709 LUT you would expose the picture so that the image on the recorders screen looks as bright as normal, skin tones would be the usual 70% (ish) and white would be 90%.

There is a further option and that is to “bake in the LUT”. This means that instead of just using the LUT to help with monitoring and exposure you actually record the image that you see on the recorders screen. This might be useful if you don’t have any time for grading, but… and it’s a big BUT…. you are now no longer recording S-log2 or raw. You will no longer have the post production grading flexibility that raw or S-Log2 provide and for me at least this really does defeat the whole point of recording raw.

Exposure: Raw will not help you in low light. Raw needs to be exposed brightly. If viewing S-Log2 then Sony’s recommendation is to have a white card or white piece of paper at 60%. I consider that to be the absolute minimum level you can get away with. The best results will normally be achieved if you can expose that white card or piece of paper at around 70% (when looking at an S-Log2 image). Skin tones would be around 55%. If you expose like this you may need to use a different LUT on the recorder to ensure the picture doesn’t look over exposed on the recorders monitor screen. Most of the recorders include LUT’s that have offsets for brighter exposures to allow for this. Then in post production you will also want a LUT with an exposure offset to apply to the S-Log2 recordings. You can use the search function (top right) to find my free LUT sets and download them.

SEE ALSO: https://www.sony.co.uk/pro/article/broadcast-products-FS5-raw-shooting-tips

 

Camrade PXW-FS7 and PXW-FS7 II rain covers.

I was recently sent a new rain cover by Camrade for my FS7 (there is also one for the FS7 II). I’ve used Camrade “wet suits” as they call them for years. They are great covers made from a low noise fabric. That means that if you need to fiddle with the cover while shooting it makes very little noise. The fabric is high quality, soft and supple but also completely waterproof.

AJC03783-1024x683 Camrade PXW-FS7 and PXW-FS7 II rain covers.
Camrade “wet suit” rain cover for the PXW-FS7

The FS7 cover set covers the whole camera and lens and also has a separate cover for the viewfinder that can be used either with the extension tube attached or thanks to a large clear panel that allows you to clearly see the LCD screen it can be used without the extension tube. There is also a cover for the arm and handgrip.

AJC03793-1024x683 Camrade PXW-FS7 and PXW-FS7 II rain covers.
The Camrade FS7 rain cover kit includes a cover for the viewfinder.
AJC03794-1024x683 Camrade PXW-FS7 and PXW-FS7 II rain covers.
The Camrade cover can be used with or without the viewfinder extension tube.

The main camera body cover has clear panels that allow you to see all the major controls and switches on both sides. In addition the clear panels can be opened and rolled up and secured open by velcro  if you want easy access to the camera while it’s not raining.

AJC03789-1024x683 Camrade PXW-FS7 and PXW-FS7 II rain covers.
Clear panels can be rolled up and secured for easy access to the camera on the Camrade rain cover.

Along the top of the cover there is a long velcro opening that allows the mount for the viewfinder to exit the cover as well as an elasticated opening for a shot gun mic. There are further openings for the front MI shoe as well as the cameras top handle.

AJC03792-1024x683 Camrade PXW-FS7 and PXW-FS7 II rain covers.
The Camrade FS7 rain cover has an elasticated sleeve for a shotgun mic there plus opening for the front shoe of the FS7.

Overall the cover is quite large and the fit is quite baggy on a bare bones FS7. But this does mean that you can attach radio mic receivers or timecode sync boxes etc to the camera and keep them protected from the elements under the cover.  The bagginess also allows you to grip the top handle through the rain cover, so even when carrying the camera from location to location it remains protected from the elements.

The length of the cover means that there is space at the back for the XDCA extension unit and/or an external battery system. There’s even a little flap at the back that allows you to see the top of the battery to check the batter status. This is great with my PAG-Link batteries (love my PAG-Links).

AJC03784-1024x683 Camrade PXW-FS7 and PXW-FS7 II rain covers.
There are access panels and flaps just where you need them on the Camrade FS7 rain cover.

If you are using a long lens then you can add an included extension section to the front of the cover that will protect most lenses. Underneath the main cover there is a zip that allows you to almost completely close the rain cover so that when using the camera on your shoulder it doesn’t flap about.

Cameras like the FS7 are expensive. While the FS7 does have a degree of built in protection against a splash of water it really isn’t designed to survive a heavy rain shower. The Camrade covers are not expensive and much better than wrapping the camera in a bin bag. When not in use the cover slips into a nice soft pouch that you can keep in your camera bag until the next time you need it.

Sony FDR-X3000 4K Action Cam – built in gimbal.

One of the cameras I used a lot in Norway is the new Sony FDR-X3000 action cam. What’s different about this POV camera is that the lens and sensor are actually mounted in an internal miniaturised gimbal. This really does work and helps stabilise the image.

There is also a tiny bluetooth monitor that you can wear on your wrist to view the pictures and control the camera. The image quality you get from these tiny cameras really is quite amazing. Take a look at the video to find out more and see some sample footage.

PXW-FS5 Native ISO’s

This is as much for my benefit as yours as I can never remember what the native ISO (0dB) is for each of the gamma curves in the FS5.

Standard 1000 ISO
Still 800 ISO
Cinegamma 1  800 ISO
Cinegamma 2  640 ISO
Cinegamma 3  1000 ISO
Cinegamma 4  1000 ISO
ITU709 1000 ISO
ITU709(800) 3200 ISO
S-Log2 3200 ISO
S-Log3 3200 ISO

Using dB and setting it to 0dB really is so much easier with this camera!

Not all raw is created equal. Log may be better

This keeps cropping up time and time again.

Unfortunately every now and again a new term or buzzword comes along that gets taken as a holy grail term. Two that come to mind right now are log and raw. Neither log, nor raw, are magic bullet solutions that guarantee the best performance. Used incorrectly or inappropriately both can result in inferior results. In addition there are many flavours of log and raw each with very different performance ranges.

A particular point in case is the 12 bit raw available from several of Sony’s mid range large sensor cameras, the FS700, FS7 and FS5.

Raw can be either log or linear. This particular flavour of raw is encoded using linear data.  If it is linear then each successively brighter stop of exposure should be recorded with twice as many code values or shades as the previous stop. This accurately replicates the change in the light in the scene you are shooting.  If you make the scene twice as bright, you need to record it with twice as much data. Every time you go up a stop in exposure you are doubling the light in the scene. 12 bit linear raw is actually very rare, especially from a camera with a high dynamic range. To my knowledge, Sony are the only company that offer 14 stops of dynamic range using 12 bit linear data.

There’s actually a very good reason for this: Strictly speaking, it’s impossible! Here’s why: For each stop we go up in exposure we need twice as many code values. With 12 bit data there are a maximum of 4096 code values, this is not enough to record 14 stops.

If stop 1 uses 1 code value, stop 2 will use 2, stop 3 will use 4, stop 4 will use 8 and so on.

STOP:  CODE VALUES:  TOTAL CODE VALUES REQUIRED.

+1          1                                   1
+2          2                                   3
+3          4                                   8
+4          8                                   16
+5          16                                32
+6          32                                64
+7          64                                128
+8          128                             256 Middle Grey
+9          256                             512
+10       512                             1,024
+11       1,024                          2,048
+12       2,048                         4,096
+13       4,096                         8,192
+14       8,192                         16,384

As you can see from the above if we only have 12 bit data and as a result 4096 code values to play with, we can only record an absolute maximum of 12 stops of dynamic range using linear data. To get even 12 stops we must record the first couple of stops with an extremely small amount of tonal information. This is why most 14 stop raw cameras use 16 bit data for linear or use log encoded raw data for 12 bit, where each stop above middle grey (around stop +8) is recorded with the same amount of data.

So how are Sony doing it on the FS5, FS7 etc? I suspect (I’m pretty damn certain in fact) that Sony use something called floating point math. In essence what they do is take the linear data coming off the sensor and round the values recorded to the nearest 4 or 8. So, stop +14 is now only recorded with 2,048 values, stop +13 with 512 values etc. This is fine for the brighter stops where there are hundreds or even thousands of values, it has no significant impact on the brighter parts of the final image. But in the darker parts of the image it does have an impact as for example stop +5 which starts off with 16 values ends up only being recorded with 4 values and each stop below this only has 1 or two discreet levels. This results in blocky and often noisy looking shadow areas – a common complaint with 12 bit linear raw. I don’t know for a fact that this is what they are doing. But if you look at what they need to do, the options available and you look at the end results for 12 bit raw, this certainly appears to be the case.

Meanwhile a camera like the FS7 which can record 10 bit log will retain the full data range in the shadows because if you use log encoding, the brighter stops are each recorded with the same amount of data. With S-Log2 and 10 bit XAVC-I the FS7 uses approx 650 code values to record the 6 brightest stops in it’s capture range reserving approx 250 code values for the 8 darkest stops. Compare this to the linear example above and in fact what you will see is that 10 bit S-Log2 has as much data as you would expect to find in a straight 16 bit linear recording below middle grey (S-Log 3 actually reserves slightly more data for the shadows). BUT that’s for 16 bit. Sony’s 12 bit raw is squeezing 14 stops into what should be an impossibly small number of code values, so in practice what I have found  is that 10 bit S-log has noticeably more data in the shadows than 12 bit raw.

In the highlights 12 bit linear raw will have more data than 10 bit S-log2 and S-Log3 and this is borne out in practice where a brightly exposed raw image will give amazing results with beautiful highlights and mid range. But if your 12 bit raw is dark or underexposed it is not going to perform as well as you might expect. For dark and low key scenes 10 bit S-Log is most likely going to give a noticeably better image. (Note: 8 bit S-log2/3 as you would have from an FS5 in UHD only has a quarter of the data that 10 bit has. The FS5 records the first 8 stops in  8 bit S-log 2 with approx 64 code values, S-Log3 is only marginally better at approx 80 code values. 12 bit linear outperforms 8 bit log across the entire range).

Sony’s F5 and F55 cameras record to the R5 and R7 recorders using 16 bit linear data. 16 bit data is enough for 14 stops. But I believe that Sony still use floating point math for 16 bit recording. This time instead of using the floating point math to make room for an otherwise impossible dynamic range they use it to take a little bit of data from the brightest stop to give extra code values in the shadows. When you have 16,384 code values to play with you can afford to do that. This then adds a lot of extra tonal values and shades to the shadows compared to 10 bit log and as a result 16 bit linear raw will outperform 10 bit log across the entire exposure range by a fairly large margin.

So there you have it.  I know it’s hugely confusing sometimes. Not all types of raw are created equal. It’s really important to understand this stuff if you’re buying a camera. Just because it has raw it doesn’t necessarily mean an automatic improvement in image quality in every shooting situation. Log can be just as good or possibly even better in some situations, raw better in others. There are reasons why cameras like the F5/R5 cost more than a FS5/Shogun/Odyssey.

Camrade CB-HD camera bag.

CAM_CAM-CB-HD-MEDIUM_3_26109 Camrade CB-HD camera bag.I’ve been using Camrade bags for years. They are tough, protect my gear well without being heavy and clunky like pelicases and other hard shell cases. In addition they don’t scream “expensive equipment here”. They just look like large holdalls.  One of the best features is the use of dividers, pads and inserts that are attached with velcro that allow you to reconfigure the bags for different applications.

CAM_CAM-CB-HD-MEDIUM_4_26110 Camrade CB-HD camera bag.
Camrade CB-HD equipment bag with reconfigurable velcro dividers and pads.

One thing I often do is carry my camera in a standard carry-on bag when I’m flying. Meanwhile my tripod goes in the camera bag in the hold. When I get to my destination the tripod comes out of the camera bag, I re-arrange the dividers and the camera then lives in the camera bag until I need to fly again. This is so easy to do with the Camrade bags. Although the bags look like soft bags they are extremely ridged. The sides, top and bottom have hard inserts in them that can withstand very large loads, they are strong enough for you to sit on them without collapsing. The bags have strong carry straps and come with a high quality, removable camera strap. There are mesh pockets on the outside as well as on the inside of the lid for those little accessories and bits and pieces that would otherwise get lost. Another bonus is a 90% white card for white balance and use as an exposure reference.

Here’s a video of the medium size Camrade CB-HD bag, designed to take the PXW-FS7 or other similar digital cinema cameras. It’s a bit taller than some of their other bags so perfect for cameras rigged up with base plates and matte boxes.

 

What is XOCN? Why is it so good, why do we need it?

This time last year I was just starting to earn about a new codec from Sony called XOCN (eXtended Original Camera Negative). XOCN is currently only available with the Sony F5/F55 and the new AXS-R7 raw recorder. Sony’s original R5 raw recorder takes 16 bit sensor data and applies a very mild amount of compression before recording the sensor data as linear raw. I have never seen any compression artefacts when using the 16 bit linear raw and it really is an amazing format to work with. So much so that I will always use it whenever possible.

But now as well as 16 bit linear raw the R7 can record 16 bit linear XOCN. Now, I’ll be completely honest here, I’m really not sure what the difference is between raw and XOCN. As far as I can tell XOCN is very, very similar to raw but sufficiently different to raw to avoid infringing on patents held by other manufacturers for compressed raw. XOCN is more highly compressed than Sony’s raw, but in every test I’ve done I have found it hard to spot any compression problems or any significant difference between XOCN and the original 3:1 raw.

So, I hear you ask…. “If it’s really that good what don’t we just do away with XAVC and use XOCN?” Well that is a good question. It all depends on processing power. XAVC is a traditional codec so inside the codec is a normal video image, so the only thing a computer has to do to play it back is uncompress the codec. XOCN is a compressed wrapper that contains sensor data, in order to view the image the computer has to uncompress the data and then it has to construct the image from the data. So you need a really good graphics card in a decent computer to work with XOCN. But if you do have a decent edit or grading workstation you should find XOCN straight forward to work with, it doesn’t require specialist cards to accelerate the decoding as Red raw does.

The key benefit that XOCN brings over traditional video is that it is 16 bit. 10 bit video is pretty good. In a 10 bit video you have almost 1000 tonal values, not bad when you consider that we have been using 8 bit for decades with only 235 shades. But 16 bit brings the potential for a whopping great 65,535 shades. This starts to make a big difference when you are extensively manipulating the image in post production. Any of you that are in to photography will know that you can push and pull a 16 bit raw photograph far, far further than an 8 bit jpeg. 16 bit video is no different.

But what’s really amazing about XOCN is you get almost all the benefits of linear raw but in a file size smaller than the same resolution 10 bit ProResHQ. If you use XOCN-LT the files are roughly half the size of ProResHQ. This means your media lasts a sensible amount of time and backups, transfers and archiving are all much easier, much faster than with uncompressed raw. Sony’s 3:1 compressed raw from the R5 has always been pretty easy to deal with. XOCN is even easier. Using XOCN-LT you can squeeze well over 2 hours of 16bit 4K on to a 512GB AXS card! In fact the file sizes are only marginally larger than XAVC class 480.

xocn-data-rates-1024x276 What is XOCN? Why is it so good, why do we need it?

The reduction in data rates becomes really significant if you shoot at high frame rates. As 50p and 60p productions become more common XOCN allows production companies to shoot 60fps with the benefits of 16 bit data but with files sizes barely any bigger than 24fps ProResHQ. If you have a Sony PMW-F55 you can shoot at 120fps in 4K using XOCN and the files are twice as big as 24fps raw.

For further information on XOCN please take a look at this page from Sony, it’s very informative and has a very good example of why 16 bit data is important, especially if you are shooting for HDR.

https://pro.sony.com/bbsc/ssr/show-highend/resource.solutions.bbsccms-assets-show-highend-f55xocn.shtml