Category Archives: cameras

The Dangers Of Hidden Moisture.

Electronics and water are two things that just don’t match. We all know this and we all know that dropping a camera into a river or the sea probably isn’t going to do it a great deal of good. But one of the very real risks with any piece of electronics is hidden moisture, moisture you can’t see.

Most modern high definition or 4K pro video cameras have fans and cooling systems designed to keep them operating for long periods. But these cooling systems mean that the camera will be drawing in air from the outside world into the cameras interior. Normally this is perfectly fine, but if you are operating in rain or a very wet environment such as high humidity, spray, mist, fog etc it will mean a lot of moisture circulating through the camera and this can be a cause of problems.

If the camera is warm relative to the ambient temperature then generally humid air will simply pass through the camera (or other electronics) without issue. But if the camera is colder than the airs dewpoint then some of the moisture in the air will condense on the cameras parts and turn into water droplets.

A typical dangerous scenario is having the camera in a nice cool air conditioned car or building and then taking the camera out of the car/building to shoot on a warm day.  As the warm air hits the slightly colder camera parts moisture will form, both on the outside and the inside of the cameras body.

Moisture on the outside of the camera is normally obvious. It also tends to dry off quite quickly, but moisture inside the camera can’t be seen, you have no way of knowing whether it’s there or not. If you only use the camera for a short period the moisture won’t dry out and once the fans shut down the cameras interior is no longer ventilated and the moisture stays trapped inside.

Another damaging scenario is a camera that’s been splashed with water, maybe you got caught in an unexpected rain shower. Water will find it’s way into the smallest of holes and gaps through capillary action. A teeny, tiny droplet of water inside the camera will stay there once it gets inside. Get the camera wet a couple of times and that moisture can start to build up and it really doesn’t take a lot to do some serious damage. Many of the components in modern cameras are the size of pin heads. Rain water, sea water etc contain chemicals that can react with the materials used in a cameras construction, especially if electricity is passing through the components or the water and before you know it the camera stops working due to corrosion from water ingress.

Storing you delicate electronics inside a nice waterproof flight case such as a Pelicase (or any other similar brand) might seem like a good idea as these cases are waterproof. But a case that won’t let water in also won’t let water and moisture out. Put a camera that is damp inside a wateproof case and it will stay damp. It will never dry out.  All that moisture is gong to slowly start eating away at the metals used in a lightweight camera body and some of the delicate electronic components. Over time this gets worse and worse until eventually the camera stops working.

So What Should You Do?

Try to avoid getting the camera wet. Always use a rain cover if you are using a camera in the rain, near the sea or in misty, foggy weather. Just because you can’t see water flowing off your camera it doesn’t mean it’s safe. Try to avoid taking a cold camera from inside an air conditioned office or car into a warmer environment. If you need to do this a lot consider putting the camera in a waterproof bag ( a bin bag will do) before taking the camera into the warmer environment. Then allow the camera to warm up in the bag before you start to use it. If driving around in a car from location to location consider using less air conditioning so the car isn’t so cold inside.

Don’t store or put away a damp camera. Always, always throughly dry out any camera before putting it away. Consider warming it up and drying it with a hairdryer on a gentle/low heat setting (never let the camera get too hot to handle). Blow warm dry air gently into any vents to ensure the warm air circulates inside to remove any internal moisture. Leave the camera overnight in a warm, dry place with any flaps or covers open to allow it to dry out throughly.

If you know you camera is wet then turn it off. Remove the battery and leave it to dry out in a warm place for 24 hours. If it got really wet consider taking it to a dealer or engineer to have it opened up to make sure it’s dry inside before adding any power.

If you store your kit in waterproof cases, leave the lids open to allow air to circulate and prevent moisture building up inside the cases. Use Silica Gel sachets inside the cases to absorb any unwanted moisture.

If you live or work in a warm humid part of the world it’s tough. When I go storm chasing going from inside the car to outside in the warm to shoot is not healthy for the camera. So at the end of each day take extra care to make sure the camera is dry. Not just any obvious moisture on the outside but dry on the inside. So this normally means warming it up a little (not hot, just warm). Again a hair drier is useful or leave the camera powered up for a couple of hours in an air conditioned room (good quality aircon should mean the air in the room is dry). I keep silica gel sachets in my camera bags to help absorb any surplus moisture. Silica gel sachets should be baked in an oven periodically to dry them out and refresh them.

Fogged Up Lens?

Another symptom of unwanted moisture is a fogged up lens. If the lens is fogged up then there will almost certainly be moisture elsewhere. In the case of a fogged up lens one thing that sometimes helps (other than a hairdryer) is to zoom in and out a lot if it’s a zoom or change the focus a lot. Moving the lens elements backwards and forwards inside the lens helps to circulate air inside the lens and can speed up the time it takes to dry out.

Advertisements

SD Cards – how long do they last?

This came up on facebook the other day, how long do SD cards last?

First of all – I have found SD cards to be pretty reliable overall. Not as reliable as SxS cards or XQD cards, but pretty good generally. The physical construction of SD cards has let me down a few times, the little plastic fins between the contacts breaking off.  I’ve had a couple of cards that have just died, but I didn’t loose any content as the camera wouldn’t let me record to them. Plus I have also had SD cards that have given me a lot of trouble getting content and files off them. But compared to tape, I’ve had far fewer problems with solid state media.

But something that I don’t think most people realise is that a  lot of solid state media ages the more you use it. In effect it wears out.

There are a couple of different types of memory cell that can be used in solid state media. High end professional media will often use single level memory cells that are either on or off. These cells can only store a single value, but they tend to be fast and extremely reliable due to their simplicity. But you need a lot of them in a big memory card.  The other type of cell found in most lower cost media is a multi-level cell. Each multi-level cell stores a voltage and the level of the voltage in that cell represents many different values. As a result each cell can store more than one single value. The memory cells are insulated to prevent the voltage charge leaking away. However each time you write to the cell the insulation can be eroded. Over time this can result in the cell becoming leaky and this allows the voltage in the cell to change slightly resulting in a change to the data that it holds. This can lead to data corruption.

So multi level cards that get used a lot, may develop leaky cells. But if the card is read reasonably soon after it was written to (days, weeks, a month perhaps) then it is unlikely that the user will experience any problems. The cards include circuitry designed to detect problem cells and then avoid them. But over time the card can reach a point where it no longer has enough memory to keep mapping out damaged cells, or the cells loose there charge quickly and as a result the data becomes corrupt.

Raspberry Pi computers that use SD cards as memory can kill SD cards in a matter of days because of the extremely high number of times that the card may be written to.

With a video camera it will depend on how often you use the cards. If you only have one or 2 cards and you shoot a lot I would recommend replacing the cards yearly. If you have lots of cards either use one or two and replace them regularly or try to cycle through all the cards you have to extend their life and avoid any one card from excessive use which might make it less reliable than the rest.

One thing regular SD cards are not good for is long term storage (more than a year and never more than 5 years) as the charge in the cells will leak away over time. There are special write once SD cards designed for archival purposes where each cell is permanently fused to either On or Off.  Most standard SD cards, no matter how many times they have been used won’t hold data reliably beyond 5 years.

Thoughts on: FS7 v EVA1.

2_SideL-1024x754 Thoughts on: FS7 v EVA1.
The PXW-FS7, Sony best selling pro video camera.

I don’t like comparing two models directly and coming out with a one is better than the other conclusion. And I don’t want this to sound like a Sony fanboy put-down of the Panasonic EVA1. But I’ve had a lot of people ask me whether they should buy an FS7 or wait for the EVA1.

First of all: I have a good relationship with Sony. I like Sony cameras, I’ve been using them for all of my career and they have served me very well, so yes, I am probably biased.

Second: I haven’t shot with an EVA1, I have only seen highly compressed online clips and read the spec sheets, so I don’t really know how it performs. Very few people do.

Third: We are at the limits of what can be extracted from a silicon based sensor. The underlying technology is the same whether you are Arri, Panasonic or Sony and there is a limit to the efficiency of silicon at converting light into electrons, dynamic range, noise etc. So really we won’t see any one camera appear on the market that is massively different to any other with a similar sized sensor, especially at similar price points.

The FS7 is the most successful pro video camera Sony have ever produced by a big margin. There are thousands of FS7’s out in the field being used day-in, day-out to produce all kinds of TV and video productions. It is the industry standard camera for most large sensor TV and video productions. Most TV producers have heard of it, many specify it. I have even seen producers offered Red’s, F55’s or Alexa’s for the same rate as an FS7 but the producers insisted on the FS7 because it’s what they know, it’s what they are comfortable with. They know exactly what they are getting and how to handle the material.

The FS7 is an incredibly versatile camera. It can shoot HD, UHD and 4K. It can record using XAVC and the XDCAM HD codec which is ingrained in television broadcasting world wide due to its low computing power requirements.  At the same time it can (via an adapter) output raw for high end film style productions. It can shoot at up to 180fps in HD for slow motion as well as 4K 10bit 422 at 60fps for normal speed or off-speed applications. It’s approved by Netflix for 4K production. There isn’t much it can’t do. It isn’t perfect, no camera is, but it represents amazing bang for the bucks and it can make very pretty pictures.

It uses professional grade recording media for reliability and speed. You can off-load your footage from the XQD cards incredibly quickly. The cards themselves are robust and reliable, there is no need to resort to parallel recording for safety. It just works as it should.

THE LENS MOUNT

If you have an FS7-II then you also have the wonderful variable ND filter and a locking E-Mount. The E-Mount is one of the biggest benefits of the FS7 over it’s competitors. Thanks to E-Mount you can use just about any lens you want as well as adapters such as speedboosters. Even the new high end Venice camera features an E-Mount because producers and directors want flexibility. Need to use the camera to shoot news? Stick on a B4 ENG zoom via an adapter. Want to shoot a movie? Use a Fujinon MK or use a true Cine lens with a PL adapter. On a budget, throw on some old Canon FD lenses or Canon EF lenses just by swapping the adapter.

Whatever any other manufacturer (or even Sony themselves) produces, none of these things will change overnight. The camera will continue to perform just as well tomorrow, next week, next month, next year as it does today. Even if a substantially better camera comes out today it will take at least 6 months for that camera to become widely accepted and longer still for it to become an industry standard like the FS7. From an image quality point of view it’s unlikely that there will be a significantly better camera at this price point any time soon because of the limits of what can be done with current sensor technology. In terms of what the camera can do, what more would you like from the FS7? It’s already feature packed.

If we take a look at what Sony have done with the new high end Venice camera you will see that if the sensor is used as a super 35mm sensor (like the FS7) it has the same pixel count as the FS7. Both are 4K at super 35mm. To get a higher resolution with Venice you have to take advantage of the larger full frame capabilities of the Venice sensor, this then gives you 6K’s worth of pixels. Why did Sony do this? why not just cram more pixels onto a super 35mm sensor?

Pixel size is very important. It’s part of the reason why cameras with bigger sensors tend to produce better pictures. A bigger pixel can gather more photons of light, making it naturally more sensitive. A bigger pixel can also hold a larger electrical signal before it overflows, this allows for a bigger dynamic range. The color filters can also be bigger allowing for higher quality filters for better color accuracy and less pixel to pixel cross-talk. For Venice, Sony chose to keep the pixels as big as possible to get the best possible image quality with low noise and high dynamic range. 4K’s worth of pixels is plenty for most productions. It’s worth remembering that the Arri cameras are only 2.8K and most people seem happy with their image quality.

The Panasonic EVA1 has more pixels than the FS7. This gives Panasonic an easy sales pitch advantage. The easy sell is the “big is better” sell.  More pixels thus higher resolution is an easy sell, bigger numbers sound better. But cramming more pixels on to the same size of sensor means the pixels must be much smaller. How will the fact that the pixels are significantly smaller effect the image quality? Only time will tell. I’m sure the EVA1 will be a good camera but I suspect that Panasonic will be trading off a bit of sensitivity and dynamic range to gain a small resolution advantage, thank most people will really struggle to see. It’s a game of swings and roundabouts that every manufacturer plays.

The FS7 is a well respected, very capable camera. It’s tried and tested. It has an incredibly flexible lens mount. One of the Canon C300’s restrictions and perhaps part of the reason why it sin’t as popular as the FS7 is the lens mount and the EVA1 shares those same restrictions. With no variable ND filter, when using most Canon lenses the aperture will go in steps making smooth mid shot exposure changes impossible. What do you do if you want to shoot in extremely low light? there’s no speed booster option. What do you do if you want to use a PL Mount cinema lens? Rent an FS7 perhaps?

The EVA1’s planned recording rates max out at 400Mb/s (probably an SD card limitation, and I have big questions over the reliability of SD cards when pushed that hard). The FS7 reaches 600Mb/s when recording 4K 60p.

The FS7 can record 4 channels of audio and has the great MI-Shoe system that allows you to power your radio mic receiver from the camera batteries. I love this system. I have the dual channel reciever so I can use 2 radio mics at once with ease. Plus I can also record a stereo atmos track at the same time.

So, all in all, the FS7 still has a great feature set and it produces a great image. The FS7 viewfinder is great for those of us that can’t focus on an LCD screen just inches from our faces. The EVA1 is not suddenly going to oust the FS7 from it’s top spot. If I was looking for a new camera as a freelance operator right now the FS7 would still be my first choice. I want to be able to work today so I need a camera that will be asked for by producers today and for the foreseeable future. Panasonic are a bit late to this particular party. To make a big impact when you are late you need to have something very special (or very cheap) and while the EVA1 will probably be a perfectly good camera, I do’t think it is going to topple the FS7 from it’s current position as the go-to large sensor workhorse.

Sony Venice at IBC 2017.

AJC05782-1024x683 Sony Venice at IBC 2017.
Sony Venice Digital Cinema Camera.

As well as several Sony Venice cameras on the Sony booth, Sony will be holding a special IBC screening of the Venice demo films projected in HDR using Dolby Vision in the main big screen auditorium of the RAI at 2.30pm on Friday. Ed Wild the DP of the UK film will also be there to answer any questions. If you are interested in Sony Venice this should not be missed.

Sony Venice. Full Frame Digital Cinema Camera.

So here it finally is. Sony’s latest digital cinema camera and finally it has a name rather than a number and it’s called Venice.

AJC05782-1024x683 Sony Venice. Full Frame Digital Cinema Camera.
Sony Venice Digital Cinema Camera.

I was lucky enough to be involved with Venice during the filming of the UK promo film, so I have had a little bit of a chance to play with one, seen it in action in the hands of an experienced DP (Ed Wild B.S.C.) and I have copies of the footage from it (I did the BTS film). So I have a pretty good idea of what we are dealing with…… and it’s good, it’s very, very good.

20170817_173653-1024x576 Sony Venice. Full Frame Digital Cinema Camera.
On-set with Sony’s Venice.

For a long time I have been saying that what we need is better pixels, not more pixels and that’s precisely what Sony have delivered in Venice. The newly developed sensor is a full frame sensor, 36mm x 24mm with 6K’s worth of horizontal pixels. This means that if you use the camera as a super 35mm camera you have 4K (and for the demo films the pre production cameras used only worked at 4K, the equivalent of 35mm 4 perf. 6K will come a little later). Venice will be able to do a huge range of resolutions and aspect ratios including Anamorphic.

Why only 6K? Well it’s down to pixel size. Bigger pixels can capture more light and they can also store more electrons before they overload. This means you get a bigger dynamic range than would typically be possible with smaller pixels. The extra light capturing capability can be used in one of 2 ways, to increase sensitivity or to decrease noise. It appears that the engineers behind Venice went for the latter, lower noise.

20170817_144204-1024x576 Sony Venice. Full Frame Digital Cinema Camera.
There’s a Sony Venice digital cinema camera buried under there somewhere.

A lot of research was done for this camera. Engineers from Japan met with many ASC and BSC cinematographers. They talked to post houses and colourists to find out what was really needed. I know that Claudio Miranda A.S.C. played an important part in the development process, he also shot the US demo film. The end result is a pretty sensitive camera (500 ISO) with very low noise and over 15 stops of dynamic range. Yes – that’s right over 15 stops without resorting to double exposures or any other tricks!!

AJC05784-1024x683 Sony Venice. Full Frame Digital Cinema Camera.
Left side of the Sony Venice cinema camera.

While the sensor isn’t a global shutter sensor it does have an extremely fast readout rate. This extra fast readout means that jello and other rolling shutter artefacts are minimised to the point where it behaves much more like a global shutter sensor.  Generally speaking, the extra memory circuits needed to get a global shutter either add noise, reduce sensitivity or reduce dynamic range. So it’s not a huge surprise to see the fast read out approach. There was quite a bit of filming done with a rather lovely Lamborghini Uraco, both hand held inside the car and mounted on the front of the car. Looking at the rushes there is no sign of any noticeable rolling shutter artefacts, even the trees flashing past in the background are still nice and vertical.

AJC05801-1024x683 Sony Venice. Full Frame Digital Cinema Camera.
Viewfinder overlays are now outside of the visible image area.

A lot of the car shooting took place at dusk and an interesting thing that came out of the UK demo reel shoot was how well it performed in low light. The 500 ISO rating is deceptive, because the camera produces so little noise you can rate the camera at a higher ISO and still get good results. Most current cinema cameras don’t produce the best results unless you rate them lower than their base ISO’s. Venice is different, the base ISO is very low noise and very high dynamic range. There appears to be little need to rate it lower for even less noise, although you could if you wish. I asked Ed Wild about this and he was really pleased with Venice’s ISO rating commenting that he often had to rate cameras from other manufacturers lower than the base ISO while he felt Venice at 500 ISO worked really well and that he would even consider rating it higher if needed.

Having a low base ISO means there is less need to use large amounts of ND on outdoor shoots. But talking of ND filters one of the great features of Venice is an 8 stage, behind the lens glass ND filter system. This allows you to choose just the right amount of ND for the light levels you have with no loss of quality. During the pre-shoot test and prep day at Pinewood each stage of the ND was carefully tested for colour shifts and accuracy, no problems were found.

ND-filter-1024x448 Sony Venice. Full Frame Digital Cinema Camera.
Sony Venice has 2 internal ND filter wheels giving 8 ND levels.

The lens mount on a Venice camera can be changed. It’s not a quick release mount as on the F55 or F5 cameras. It’s normally a PL mount. But the PL mount can be removed and the camera changed to a Sony E-Mount. 6 bolts remove the PL mount and a locking E mount similar to the one on the FS7 II is on the cameras body. This opens up the possibility of using a huge range of lenses, practically anything in fact as it’s easy to adapt from E-Mount to other mounts such as Canon EF for example. For the UK demo reel XTAL Anamorphics from MovieTec were used. Ultra Primes were used for the US promo film.

VENICE A Truly Modular Camera.

Not only can the lens mount be changed but the entire front part of the camera can be changed by removing just 4 screws. Venice is built as a modular camera and the front part of the camera that contains the sensor and ND filters is a removable module (no need for lab conditions or clean rooms to remove the module). This means that in the future Sony could release new sensor options for Venice. Maybe a higher resolution sensor, a monochrome sensor or a high speed sensor. Removing the front sensor module from the camera allows easy access to the cameras internal near silent fan so that it can be cleaned or replaced should that become necessary. All of the cameras electronics are in sealed compartments for dust and moisture protection and rubber seals are installed around any openings such as the SxS card access door. In addition if you do use the AXS-R7 recorder to record Raw/X-OCN this too is weather sealed.

AJC05794-1024x683 Sony Venice. Full Frame Digital Cinema Camera.
There are 2 SXS card slots on the camera body.

Venice records to SxS cards and with the AXS-R7 attached to AXS cards. You can record XAVC, ProRes HD, ProRes Proxy, as well as Raw/X-OCN. The XAVC recording option allows you to record direct to compact but high quality ready to go files or to record lower resolution proxy files.  X-OCN gives a 16 bit linear workflow with raw type performance but without massive files. There is very little difference between X-OCN and Sony 16 bit linear raw and different versions of X-OCN work at different bit rates so you can pick and choose the right balance of image quality against file size for each project.

AJC05796-1024x683 Sony Venice. Full Frame Digital Cinema Camera.
Plenty of output options on the Sony Venice camera including 4 x HDSDI/4K SDI and an additional dedicated monitor output.

For Venice Sony have developed new colour science that is designed to emulate film. Looking at the rushes from the camera it really looked nice without any grading. The images contain lots of lush colours. You could see amazing subtle tonal information in the leaves and trees in the shots. Skin tone highlights roll of in a particularly pleasing way.

One of the biggest criticisms of the PMW-F55 and F5 cameras when they were launched was that they were too complex to drive. The F55 menu system is very large containing many, many pages of settings and adjustments. This is a cinema camera without a lot of the fancy modes that cameras like the F5 or F55 have so the menus are simpler straight away. A lot of time was spent trialling different menu structures to determine the easiest and friendliest structure. At the press event during the hands on session most people found it quite easy to navigate around the menus. But really the way the side panel and the quick menu is set up means you won’t need to dive into the main menu very often.

20170817_144216-1024x576 Sony Venice. Full Frame Digital Cinema Camera.
Sony Venice right side.

The camera body is a bit bigger than an F55/F5 and a lot smaller and lighter than an F65. On the right side of the camera there is the main LCD display, which is very similar to the one on the F55/F5 with 6 hot keys around it and a rotary menu dial. This is actually quite similar to the F55’s new Quick Menu system and easy to master.  All the key functions and setup options are just a couple of button presses away. This is the main display and where most of the cameras settings can be changed. It’s on the right side so the AC or DIT can get at it and see it easily. Pressing the user button turns 5 of the 6 buttons around the LCD into user assignable buttons (the 6th button is used to set the assignable functions).

AJC05789-1024x683 Sony Venice. Full Frame Digital Cinema Camera.
The right side main LCD display and option buttons.

On the left side of the camera there is a small information display that shows the frame rate, shutter speed, ND, ISO and white balance.

AJC05786-1024x683 Sony Venice. Full Frame Digital Cinema Camera.
The left side information display.

The white balance of the camera can be dialled in manually unlike the F55 you are no longer tied to 3 presets. You can now dial in the white balance you want down to 1 kelvin increments. Once you have set your white balance you can include your new custom setting in the preset list for quick recall at any time.

The camera can run off either 12V or 24V and it has an internal 24V inverter so that when using a 12V power source such as a V-Mount battery you still get 24V out of the industry standard 24V lemo connectors.

AJC05799-1024x683 Sony Venice. Full Frame Digital Cinema Camera.
The Sony Venice PL mount is secured to the cameras body with 6 bolts. When removed there is a locking E-Mount.

Venice is a modular camera system with various upgrade options. The base camera comes as a 4K super 35mm camera. the 6K option, anamorphic options (6K full frame and 4K 35mm) and other options will be available as option licences. These licences can be purchased as weekly, monthly or permanent options depending on your needs.

What about the picture? I spent a couple of days looking at footage from this camera both in my own grading suite and at Sony’s Pinewood facility during the production of the BTS film. I also saw it projected at the press day and it looks good. One problem today is that there are so many very good and very capable cameras that it’s tough to really pinpoint things that make one stand out as better than another. What I have found to be very pleasing from Venice is the skin tones. Sony have introduced new colour science and colour management for Venice and I think it looks really good. Even before grading, just looking at the clips on a monitor with S-Log3 gamma the pictures have a wonderful rich look. It’s worth noting that the cameras used for both the US and EU launch films were hand made pre-production units and the engineers are still learning how to fully exploit the new sensors in these cameras. So we can only expect them to get better between now and when they become available to buy.

Will I be getting one? Probably not. This is a wonderful camera and I would love to own one, but Venice will be more expensive than the F55 and probably not the best investment for me at least. However I fully intend to get my grubby fingers on one as soon as possible to learn all of it’s in’s and out’s as I hope to use a Venice for some short films I have planned. This is a serious Alexa or Red alternative It has image quality to rival or better almost any other digital cinema camera, but that does come at a price, although it’s no more expensive than any other comparable camera.

The estimated price for the base camera is expected to be around €37,000. Full frame and anamorphic options will be payable options, with the full-frame option costing a approx €4,000 and the anamorphic costing a approx €6,000.  it should be available from around February 2018.

Sony RX0 – Is this the ultimate mini-cam (for now at least).

RX0 Sony RX0 - Is this the ultimate mini-cam (for now at least).Sony have just released a rather exciting looking new type of mini-cam, the RX0.

I have not played with one yet, so I can only base my comments on the specs, but the specs are both impressive and exciting.

Most gopro type cameras use tiny sensors packed with pixels. This presents a problem as they tend not to be very light sensitive. However those small sensors when combined with an ultra wide angle lens eliminates the need to focus as the depth of field is vast. But for many applications that’s not what you always want. Sometimes you don’t want an ultra wide fisheye view of the world, sometimes you want to get in a bit closer. Sometimes you want a bit of selective focus. In addition it’s hard to be creative when you have no focus or depth of field control. Talking of control most mini-cams have very, very little in the way of manual control as they don’t have adjustable apertures and as a result rely entirely on variable gain and shutter speeds to control the exposure.

Enter the RX0. The RX0 shares a lot of features with the well regarded RX series of compact stills cameras. It has a 1.0″ type sensor, huge compared to most other minicams. It has 24mm f4 lens so it’s less wide and has a shallower DoF. It can shoot in 4K, it can even record using S-Log2 to capture a greater dynamic range so it may turn out to be a great mini-cam for HDR productions (although how big that dynamic range is is not clear at this time). I wish I had some of these for the HDR shoots I did at the beginning of the year.

It’s a camera you can control manually and it even has a special high speed shutter mode for all but eliminating rolling shutter artefacts.

Want to shoot slow-mo? No problem, the maximum frame rate is 960fps (although I suspect that the image quality drops at the higher frame rates).

It’s still very small and very compact, it’s also waterproof and has a high degree of shock proofing.

I can see myself using this as a time lapse camera or in a VR rig. So many applications for a camera like this. Can’t wait to get my hands on one.

Here’s the Sony product page: https://www.sony.co.uk/electronics/cyber-shot-compact-cameras/dsc-rx0#product_details_default

Fujinon MK18-55mm and MK50-135mm on my PMW F5 for first tests.

PMW-F5-on-jib-with-Fujinon-MK18-55mm-duclos-mount Fujinon MK18-55mm and MK50-135mm on my PMW F5 for first tests.
My PMW-F5 with Fujinon MK18-55mm zoom fitted with Duclos FZ mount.

Prepping my camera today for a shoot tomorrow. I’ll be shooting with the Fujinon MK18-55mm and MK50-135mm lenses fitted with Duclos FZ mount adapters. I’ve been using the MK18-55mm on my FS7 and FS5 for some time and I have to say I really love this lens. It produces beautiful images with silky smooth bokeh, it’s parfocal and it covers a very hand range of focal lengths. I’ve been wanting to use this lens on my F5 for some time and now at last I can. These lenses work great on the F5 and F55. They are very light compared to most PL lenses and this really helps with the cameras balance, especially if shooting handheld. They are also very cost effective.

PMW-F5-PMW-F55-with-Fujinon-MK18-55mm-duclos-mount Fujinon MK18-55mm and MK50-135mm on my PMW F5 for first tests.
Fujinon MK18-55mm with Duclos FZ adapter on PMW-F5.

The light lens weight means I need less weight on my jib than I would have with most similar PL zoom lenses. Also being nice and fast at T2.9 I know I can get great shallow DoF. Tomorrow I’m going to be shooting 2 amazing artists that create incredibly detailed things out of large lumps of iron and steel. I’ll be shooting examples of some of the finest works of metallic art along with all the key parts of the process of creating them. There will be beauty, iron, steel, heat, flames and sparks. I’ll try to post pictures from the shoot over the weekend and once the video is done it will be online for all to enjoy.

Beware Exposing To The Right With Log.

That may seem like quite a sensational headline – beware exposing to the right with log – but let me explain.

First of all, I’m not saying you can’t or shouldn’t expose to the right, all I am saying is beware – understand the implications.

First of all what is normally meant by exposing to the right? Well it’s a term that comes from the world of photography where you would use the cameras histogram to measure the exposure levels. Exposing to the right would normally mean setting the shutter speed and aperture so that the levels shown on the histogram are as far to the right as you can get them without going beyond the right side of the histogram. This would ensure a nice bright exposure with lots of light falling on the sensor, something that is normally highly desirable as you get a nice low noise picture once you have adjusted and processed it in your photo editing software.

You can expose to the right with a video camera too. However when shooting with Rec-709 or conventional gammas this can often result in nasty looking highlights thanks to the default knee settings, so it’s not normally a good idea for 709 and standard gammas.

With log or raw as there is no highlight roll off you can expose to the right and it should give you a nice bright exposure… or will it?????

The problem with exposing to the right is that you are exposing for the highlights in the scene. If shooting a low contrast or low dynamic range scene this isn’t going to cause any problems as exposing to the right will mean that everything in the scene is nice and bright.

But if shooting a high dynamic range scene, say an outdoor scene with bright clouds in the sky but large areas of shadow, the exposure will be optimised for the highlights. The mid range and shadows may end up too dark. On a sunny day if shooting a person with their back to the sun the sky could easily be 6 or 7 stops brighter than the skin tones. If you expose for the sky/highlights the skin tones will be 1 or 2 stops darker than the basic exposure level recommended for most  log curves.

(S-log2/3 has 14 stops. At the base exposure you have 6 stops above middle grey and 8 below. Skin tones are normally between 1 and 2 stops above middle grey. So if the sky/highlights are 6 stops above the skin tones, then exposing for the highlights will put the skin tones where middle grey should be, which is 1 stop under exposed and 2 stops below where I would normally like to see skin tones when shooting with log or raw).

The first thing a viewer will notice when they look at a scene with faces or people will be the skin tones. If these have been under exposed they will be grainy and less than ideal. The viewer will notice noise and grain and poor shadows long before they look at the brightest highlights. Shooting log and protecting the highlights or exposing to the right will often compromise the all important mid tones because you are exposing for the highlights, not the midrange. In addition exposing for highlights with a high dynamic range scene can often push the shadows down in level and they will end up noisy and grainy. The biggest issue with exposing to the right is that it’s extremely difficult to estimate how many stops there are between your mid tones and the highlights, so you never know quite where your mid tones are falling.

(Midtones – generally a white piece of paper or a 90% reflectivity white card would be considered to be the top end of the mid tones. Go down about 2.5 stops from white and you hit middle grey  (18% grey card). This range between middle grey and white is where skin tones, plants, most animals etc will be and it probably the most important part of most images).

An important consideration with log and raw is that there is no highlight roll off. Standard gammas (with the default knee found on almost every camera) , cinegammas, hypergammas etc all roll off the highlights. That is to say that as you approach the peak recording level the contrast is reduced as the highlights are squeezed together to try to extend the dynamic range. This reduction in contrast means that it is very difficult, if not impossible, to recover any nice, useable picture information out of anything close to the peak recording level. As a result with conventional gammas we tend to avoid over exposure at all costs as it looks nasty. This highlight roll off is one of the things that gives video the video look.

Log and raw don’t have this same kind of highlight roll off. The image gets brighter and brighter until it clips. With log the stop immediately below clipping contains just as much picture information as any other stop brighter than middle grey. With linear raw the stop just below clipping has more information than any other stop. As a result in post production there is a very large amount of data that can be pulled out of these highlights, even if they are a little clipped! So don’t worry about a few clipped highlights when shooting log. The other thing to remember is there is no TV or monitor that can show these highlights as they really are, so they will never look perfect anyway.

Another thing that happens when exposing to the right is that grading becomes harder than it needs to be. Because the separation between the mid tones and highlights will vary greatly depending on things like whether you are shooting into or away from the sun, when you expose to the right you mid tone brightness will be up and down all over the place. So in post production as well as adding the look that you want to your footage, you are also going to have to spend a lot of time matching the mid range exposure to balance skin tones etc from shot to shot.

Rather than exposing to the right what I recommend is exposing for the mid range. After all this is the important part of the image. To do this you need to use a diffuse reflective shade. The most commonly used shades are a 90% white card and/or an 18% reflectivity grey card – middle grey. Get the mid range right and in most cases the highlights will take care of themselves. Getting the mid range right might mean exposing the mid range  brighter than the recommended levels. But it’s the mid range we need to measure, not the highlights, this is the important part of the image.

90% white is an incredibly important level in the world of film and video. A typical piece of office paper reflects about 92-94% of the light falling on it. Office paper often uses brighteners and special chemicals to make it look bright and white. This white is the brightest diffuse surface you will likely ever see.  Anything brighter than this is normally going to be an actual source of light. The sky perhaps or a direct bounced reflection off a shiny, reflective surface such as the bodywork of a car. So anything brighter than 90% white would normally be considered to be a highlight and to us humans, highlights are visually less important than the mid range. This is why the knee on most video cameras kicks in at around 90%. Anything brighter than 90% is a highlight so the knee only effects highlights and leaves the all important mid range alone.

Middle grey is also very important because it’s a shade of grey that to most people looks to be half way between black and white. Skin tones fall roughly half way between middle grey and white. In addition if you average all the brightness levels within a typical scene the end result is typically very close to middle grey.  Light meters are calibrated to middle grey. The relationship between middle grey and white is fixed. White reflects 90%, middle grey 18%, no matter how bright the actual light source. So whether you are indoors, outside. Whether it’s sunny or overcast, white and middle grey will always be close to 2.5 stops apart. They are extremely useful fixed reference levels.

There are many ways to measure the brightness of a white or grey card. My preferred method is with a waveform display. But you could also use zebras (use a narrow zebra window if you can).  You can also use false colour. Unfortunately it’s very difficult to use a histogram to measure the brightness of a specific target. The histogram is a great measuring tool for photography, but less than ideal for video. If you can’t get a white/grey card out in front of the camera you could consider using a light meter. It’s also worth noting that skin tones sit just a little over half way between middle grey and white, so if you have no other reference you could simply place your skin tones a touch brighter than half way between the values you are targetting for middle grey and white.

Just to be clear: I do still recommend exposing Sony’s S-log2, S-log3 and raw between 1 and 2 stops brighter than the Sony base levels. But the key take-away is that it’s the mid range you need to measure and expose at this level. Exposing to the right using a histogram or waveform and just looking at the peaks and brightest parts of the image does not tell you what is happening in he mid range. Measure the mid range, not the peak brightness.

 

Guide to Cine EI – Still Current.

Just a reminder that my guide to shooting with Cine EI for the PMW-F5 and F55 cameras is still just as valid today as it was when I wrote it back in 2013. There have been a few tweaks to the cameras menu here and there, but the principles and basic operation have not changed.

So if you are new to Cine-EI please take a look at the guide. It takes you through how to shoot with Cine EI, which LUT’s to use and how to expose them.

Cine-EI Mode when recording S-Log2/3 and raw on the F5 and F55.