There Is No Such Thing As A “12G” SDI Cable.

The way the coax cables used for SDI works is very different to the way an HDMI cable works. HDMI cables are indeed constructed quite differently between early HDMI 1.0 – 1.4 classes and the more recent 2.0+ classes. So with HDMI you will find that an old, early version HDMI cable won’t work with the latest standards.

SDI cables are nothing fancy.

SDI uses nothing more sophisticated than a single core coax cable that is no different in it’s basic design, construction and mode of operation to an ordinary TV aerial down lead. It is a very simple type of cable and really nothing fancy.

Frequency matters.

The SDI signal is very high frequency; in effect it is a radio signal. From a cabling point of view the ONLY difference between the original SDI standard and the latest standards is the frequency. The way the cable works is no different between the original SDI standard and the latest and a camera or monitor has no way of telling or knowing what type of cable you are using.

Frequency is important because the higher the frequency, the more lossy ANY coax cable will become (leaky kind of describes what’s going on). Low quality cable – more signal leaks out, high quality cable less leaks out so the signal will go further.

But even the very earliest SDI cables were normally made using good quality very low loss coax. These original SDI cables are perfectly capable of carrying the higher frequencies used by 12G SDI. BUT over very long lengths there will be more loss at 12G than at 1.5G.  

It’s not the “G” that counts, it’s the quality.

So really when looking for SDI cables, the question isn’t – “is it 12G” the question should be “what are the cable losses” or more simply “is it a good quality cable”. There are plenty of original SDI cables that can be used at 50m at 12G without issue. At the same time I have also seen cables marketed as “12G” that are nowhere near as well screened, with much higher losses, that barely work at 10m.

Just as important as the cable losses is the construction. Have the connectors been fitted correctly? Are the connectors correctly sized for the cable that’s being used, has the crimping or soldering been done well? Most coax cable failures are due to poor connector assembly or the use of low-quality connectors.

Impedance Matter.

One other thing to watch for is the cable impedance. SDI cables should be made using 75 ohm impedance cable and connectors. Radio cables for radio communications normally use 50 ohm cables and connectors and the two are not really compatible. But often cheaper cables sold for SDI and video applications may be made using 50 ohm parts as often these are cheaper. These cables will fit and more often than not they appear to work. BUT the pins in the BNC plugs are a different size and this can result in intermittent connections and over time can even damage the connectors on cameras and monitors etc. So do make sure your cables really are 75 ohm.

In the real world:

For most shorter cables, up to 5m cable losses are rarely an issue unless the cable is of particularly low quality or badly made. For between 5m and 10m you should avoid the very thin coax cables as the losses become more significant. Above 10m use only low loss cables with good quality screening. A cable sold as a “12G” cable should indicate good quality low loss cable, but it is not a guarantee. And the vast majority of well-constructed normal SDI cables will work just as well unless you want extremely long runs in which case you need ultra-low loss cable.

3 thoughts on “There Is No Such Thing As A “12G” SDI Cable.”

  1. Excellent article, all very accurate.

    If you find yourself needing to join two SDI cables, pay attention to the quality of the coupling. They are rated for impedance in the same way that connectors and cables are. All “BNC” connectors/couplings are not the same, even if they seem to physically fit. Viewed on an oscilloscope, you can see the signal degradation caused by cheap couplings (the “eye” becomes misshapen).

  2. I freaking knew it! I was so confused that there was this magical difference with no physical difference in the connector or, apparently, the cable. I was googling like crazy to find the cold hard physical improvement that made this difference, and there was NOTHING out there in the google-verse. Thank you. Your explanation jives with my understanding and assumptions.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.