We all fear the failure of any expensive electronics, especially if it is out of warranty. So when a user reports that their FX9 has failed, seemingly for no reason and that it is the very expensive to replace DPR-394 board it causes a lot of concern for not only the unfortunate owner, now faced with a huge repair bill but also for other FX9 users.
Failures are not common.
The first thing I will say is that there are thousands and thousands of FX9’s out there being used every single day. Over the last 2.5 years, across all of the user groups I monitor I have probably seen less than 20 instances of people reporting the unexplained failure of their FX9 ( I think I’ve seen about 15 that I can remember). But, it must be said that the most common unexplained failure does seem to involve the DRP-394 board. But, this isn’t really all that unexpected as the DPR-394 is the heart of the camera. It manages everything the camera does, performs all of the image processing, manages the power supply, provides the signals that go to the HDMI, SDI and VF.
A problem we have today with modern camera repairs is that repairs are normally done by swapping out faulty boards. Because the majority of service centers only ever go so far as to determine which board is faulty it is nearly impossible to understand what caused the problem.
Some things I have observed:
Amongst the reported failures some appear to be directly related to the use of D-Tap connectors to power monitors or other accessories. D-Tap connectors can very easily connected the live side of the connection before the negative side and this leads to power surges through the HDMI/SDI that has quite likely taken out the DPR-394 board. There is also what appears to be a higher instance of cameras powered by V-Lock adapters that suffered DPR-394 failures. It might be that this is also related to D-Tap power issues as I think a big reason why many use V-lock batts is to power not only the camera but also accessories, most commonly via the dreaded D-Tap plugs, but it could be many things and unless you isolate exactly which bit of the board has failed it’s impossible to say why it has failed.
Because the DPR-394 board does virtually everything and represents most of the cameras electronics, it is not a surprise that it is also the most common point of failure. While any failure is unwelcome, the number of failures I have seen is not in my opinion an indication of a design issue. If there really was a design flaw I believe we would be seeing a lot more failures given the thousands of cameras in use. I suspect that in many cases some external factor may have led to the failure of the board.
My advice is to take great care when using D-Taps to power accessories off the cameras battery. Always do all your power connections first, then check any accessories power up correctly before finally connecting the SDI or HDMI cables. And then do the reverse when disconnecting, SDI/HDMI disconnected first, power down the camera and accessories properly, remove the power connections last. It’s worth pointing out that many cameras from many manufacturers, including Arri, Canon etc have suffered damage due to power surge issues related to D-Tap connectors.
Additionally always power the camera up from the on/off switch and then switch it off and allow it to power down properly. Never remove or restore the power to a camera that is turned on. The cameras power switch does not connect/disconnect the power, it is a switch that instructs the camera to boot up or power down in a specific order and it needs the power to the camera to be correctly connected and stable to ensure this all happens in the right order. If using a V-Lock adapter you really need to avoid the camera suddenly losing power when the battery shuts off without warning.
EDIT: Quite a few people have been commenting about failures of boards in other cameras including Venice, failures that are often directly attributed to the use of D-Tap or other power cables powering externally attached devices off the same power source as the camera. This is not a camera design issue, it’s a connector design issue. It should be noted that Sony don’t make batteries with built in D-Tap sockets for this very reason and that Sony don’t include D-Tap sockets on their camera bodies. There is one on the XDCA-FX9 but this is a current and voltage limited, protected socket with current and voltage limiters and trips and many connected devices will cause this to trip. The one common thread across a very large number of these failures is the use of D-Taps. The issue with D-Taps is that very often the positive power pin makes contact before the negative pin and this causes power to run the wrong way through various circuits trying to find a way back to the missing ground/negative causing havoc with the sensitive electronics inside the camera.
This is an issue for Arri, Panasonic, Canon and just about every camera manufacturer.
CineEI is different to conventional Shooting and you will need to think differently.
Shooting using CineEI is a very different process to conventional shooting. The first thing to understand about CineEI and Log is that the number one objective is to get the best possible image quality with the greatest possible dynamic range and this can only be achieved by recording at the cameras base sensitivity. If you add in camera gain you add noise and reduce the dynamic range that can be recorded, so ideally you always need to record at the cameras base sensitivity for the best possible captured image.
Sony call their system CineEI. On an Arri camera the only way to shoot log or raw is using Exposure Indexes and it’s the same with Red, Canon and almost every other digital cinema camera when shooting log. You always record at the cameras base sensitivity because this will deliver the greatest dynamic range.
Post Production.
A key part of any log workflow is the post production. Without a really good post production workflow you will never see the best possible results from shooting Log. An important part of the post production workflow will be correcting for any exposure offsets used when shooting. If something has been exposed very brightly, then in post you will bring that exposure down to a normal level. Bringing the levels down in post will decrease noise. The flip side to this is that if the exposure is very dark then you will need to raise the levels in post and this will make then more noisy
Exposure and Light Levels.
It is assumed that when using CineEI and shooting with log that you will control the light levels in your shots and use levels suitable for the recording ISO (base ISO) of the camera using combinations of aperture, ND and shutter speed, again it’s all about getting the best possible image quality. If lighting a scene you will light for the base ISO of the camera you are using.
Here’s the bit that’s different:
Changing the EI (Exposure Index) allows you to tailor where the middle of your exposure range is. It allows you to alter the balance between more highlight range with less shadows or less highlight range with more shadow information in the captured image. On a bright high contrast exterior you might want more highlight range, while for a dark moody night scene you might want more shadow range. Exposing brighter puts more light on to the sensor. More light on the sensor will extend the shadow range but decrease the highlight range. Exposing darker will decrease the shadow range but also allow brighter highlights to be captured without clipping.
IMPORTANT: EI is NOT the same as ISO.
ISO is a measure of a film stock or camera sensors SENSITIVITY to light. It is the measure of how strongly the cameras sensor responds to light.
Exposure Index is a camera setting that determines how bright the image will become for a given EXPOSURE. While it is related to sensitivity it is NOT the same thing and should always be kept distinct from sensitivity.
ISO= Sensitivity and a measure of the sensors response to light.
EI =Exposure Index – how bright the image seen in the viewfinder will be.
The important bit to understand is that EI is an exposure rating, not a sensitivity rating. The EI is the number you would put into a light meter for the optimum EXPOSURE for the type of scene you are shooting. The EI that you use depends on your desired shadow and highlight ranges as well as how much noise you feel is acceptable.
What Actually happens when I change the EI value on a Sony camera?
On a Sony camera the only things that change when you alter the EI value are the brightness of any Look Up Tables (LUTs) being used, the EI value indicated in the viewfinder and the EI value recorded in the metadata that is attached to your clip.
Importantly – To actually see a change in the viewfinder image or the image on an external monitor you must be viewing your images via a LUT as the EI changes the LUT brightness, changing the EI does not on it’s own change the way the S-Log3 is recorded or the sensitivity of the camera. If you are not viewing via a LUT you won’t see any changes when you change the EI values, so for CineEI to work, you must be monitoring via a LUT.
Raising and Lowering the EI value:
When you raise the EI value the LUT will become brighter. When you lower the EI value the LUT will become darker.
If we were to take a camera with a base ISO of 800 then a nominal “normal” exposure would result from using 800 EI. When the base ISO value and the EI value are matched, then we can expect to get a “normal” exposure.
The S-Log3 levels that you will get when exposed correctly and the EI value matches the cameras base ISO value. Note you will have 6 stops of range above middle grey and 8+ stops below middle grey.
Let’s now look at what happens when we use EI values higher or lower than the base ISO value.
(Note: One extra stop of exposure is the equivalent of doubling the ISO or EI. One less stop of exposure is the equivalent of halving the ISO or EI. So if double 800 EI so you get to 1600 EI this would be considered 1 stop higher. If you double 1600 EI so you are at 3200 EI this is one further stop higher. So 800 EI to 3200 EI is 2 stops higher)
If you were to use a higher EI, let’s say 3200 EI, two stops higher than the base 800 EI, then the LUT will become 2 stops brighter.
If you were using a light meter you would enter 3200 into the light meter.
When looking at this now 2 stops brighter viewfinder image you would be inclined to close the aperture by 2 stops (or add ND/shorter shutter) to bring the brightness of the viewfinder image back to normal. The light meter would also recommend an exposure that is 2 stops darker.
Because the recording sensitivity or base ISO remains the same no matter what the EI, the fact that you have reduced your exposure by 2 stops means that the sensor is now receiving 2 stops less light, however the recording sensitivity has not changed.
Shooting like this, using a higher EI than the base ISO will result in less light hitting the sensor which will result in images with less shadow range and more noise but at the same time a greater highlight range.
The S-Log3 levels that you will get when the EI value is 2 stops higher than the cameras base ISO value and you have exposed 2 stops darker to compensate for the brighter viewfinder image. Note how you now have 8 stops above middle grey and 6+ stops below. The final image will also have more noise.
A very important thing to consider here is that this is not what you normally want when shooting darker scenes, you normally want less noise, more shadow range. So with CineEI, you would normally try to shoot a darker, moody scene with an EI lower than the base ISO.
In this chart we can see how at 800 EI there is 6 stops of over exposure range and 9 stops of under. At 1600 EI there will be 7 stops of over range and 8 stops of under and the image will also be twice as noisy. At 400 EI there are 5 stops over and 10 stops under and the noise will be halved.
This goes completely against most peoples conventional exposure thinking.
For a darker scene or a scene with large shadow areas you actually want to use a low EI value. So if the base ISO is 800 then you might want to consider using 400 EI. 400 EI will make the LUT 1 stop darker. Enter 400 EI into a light meter and compared to 800 the light meter will recommend an exposure that is 1 stop brighter. When seeing an image in the viewfinder that is 1 stop darker you will be inclined to open the aperture or reduce the ND to bring the brightness back to a normal level.
This now brighter exposure means you are putting more light on to the sensor, more light on the sensor means less noise in the final image and an increased shadow range. But, that comes at the loss of some of the highlight range.
The S-Log3 levels that you will get when the EI value is 2 stops lower than the cameras base ISO value and you have exposed more brightly to compensate for the darker viewfinder image. Note how you now have 4 stops above middle grey and 10+ stops below. The final image will have less noise.
Need to think differently.
The CineEI mode and log are not the same as conventional “what you see is what you get” shooting methods. CineEI requires a completely different approach if you really want to achieve the best possible results.
If you find the images are too dark when the EI value matches the recording base ISO, then you need to open the aperture, add light or use a faster lens. Raising the EI to compensate for a dark scene is likely to create more problems than it will fix. It might brighten the image in the viewfinder, making you think all is OK, but on your small viewfinder screen you won’t see the extra noise and grain that will be in the final images once you have raised your levels in post production. Using a higher EI and not paying attention could result in you stopping down a touch to protect some blown out highlight or to tweak the exposure when this is probably the last thing you actually want to do.
I’ve lost count of the number of times I have seen people cranking up the EI to a high value thinking this is how you should shoot a darker scene only to discover they can’t then make it look good in post production. The CineEI mode on these cameras is deliberately kept separate from the conventional “custom” or “SDR” mode to help people understand that this is something different. And it really does need to be treated differently and you really do need to re-learn how you think about exposure.
For dark scenes you almost never want to use an EI value higher than the base ISO value and often it is better it use a lower EI value as this will help ensure you expose any shadow areas sufficiently brightly.
The CineEI mode in some regards emulates how you would shoot with a film camera. You have a single film stock with a fixed sensitivity (the base ISO). Then you have the option to expose that stock brighter (using a lower EI) for less grain, more shadow detail, less highlight range or expose darker (using a higher EI) more grain, less shadow detail, more highlight range. Just as you would do with a film camera.
Sony’s CineEI mode is not significantly different from the way you shoot log or raw with an Arri camera. Nor is it significantly different to how you shoot raw on a Red camera – the camera shoots at a fixed sensitivity and any changes to the ISO value you make in camera are only actually changing the monitoring brightness and the clips metadata.
Exposing more brightly on purpose to achieve a better end result is not “over exposure”. It is simply brighter exposure. Over exposure is generally considered to be a mistake or undesirable, but exposing more brightly on purpose is not a mistake.
The FX9 Guide series of videos and the downloadable and searchable PDF guide that I created for Sony’s PXW-FX9 camera have been updated to cover the new features in the version 3 firmware.
There are 6 new videos including a short film called “I-Spy” that makes use of almost all of the new features.
The full set of FX9 guide videos can be found here on the Sony website:
Below is the “I-Spy” short film that I made to generate the sample material needed for the tutorial videos. Every shot in I-Spy uses at least 1 of the new features included in the version 3 update.
This is another common question on many user groups. It comes up time and time again. But really there is no one clear cut answer. In a perfect world we would never need to add any noise reduction, but we don’t live and shoot in a perfect world. Often a camera might be a little noisy or you may be shooting with a lot less light than you would really like, so in camera NR might need to be considered.
You need to consider carefully whether you should use in camera NR or not. There will be some cases where you want in camera NR and other times when you don’t.
Post Production NR. An important consideration is that adding post production NR on top of in-camera NR is never the best route to go down. NR on top of NR will often produce ugly blocky artefacts. If you ever want to add NR in post production it is almost always better not to also add in camera NR. Post production NR has many advantages as you can more precisely control the type and amount you add depending on what the shot needs. When using proper grading software such as DaVinci Resolve you can use power windows or masks to only add NR to the parts of the image that need it.
Before someone else points it out I will add here that it is almost always impossible to turn off all in camera NR. There will almost certainly be some NR added at the sensor that you can not turn off. In addition most recording codecs will apply some noise reduction to avoid wasting data recording the noise, again this can’t be turned off. Generally higher bit rate, less compressed codecs apply less NR. What I am talking about here is the additional NR that can be set to differing levels within the cameras settings that is in addition to the NR that occurs at the sensor or in the codec.
Almost every NR process, as well as reducing the visibility of noise will introduce other image artefacts. Most NR process work by taking an average value for groups of pixels or an average value for the same pixel over a number of frames. This averaging tends to not only reduce the noise but also reduce fine details and textures. Faces and skin tones may appear smoothed and unnatural if excessively noise reduced. Smooth surfaces such as walls or the sky may get broken up into subtle bands or steps. Sometimes these artefacts won’t be seen in the cameras viewfinder or on a small screen and only become apparent on a bigger TV or monitor. Often the banding artefacts seen on walls etc are a result of excessive NR rather than a poor codec etc (although the two are often related as a weak codec may have to add a lot of NR to a noisy shot keep the bit rate down).
If you are shooting log then any minor artefacts in the log footage from in camera noise reduction may be magnified when you start grading and boosting the contrast. So, generally speaking when shooting log it is always best to avoid adding in camera NR. The easiest way to avoid noise when shooting with log is to expose a bit brighter so that in the grade you are never adding gain. Take gain away in post production to compensate for a brighter exposure and you take away much of the noise – without giving up those fine textures and details that make skin tones look great. If shooting log, really the only reason an image will be noisy is because it hasn’t been exposed bright enough. Even scenes that are meant to look dark need to be exposed well. Scenes with large dark areas need good contrast between at least some brighter parts so that the dark areas appear to be very dark compared to the bright highlights. Without any highlights it’s always tempting to bring up the shadows to give some point of reference. Add a highlight such as a light fixture or a lit face or object and there is no need to then bring up the shadows, they can remain dark, contrast is king when it comes to dark and night scenes.
If, however you are shooting for “direct to air” or content that won’t be graded and needs to look as good as possible directly from the camera then a small amount of in camera NR can be beneficial. But you should test the cameras different levels to see how much difference each level makes while also observing what happens to subtle textures and fine details. There is no free lunch here. The more NR you use the more fine details and textures you will lose and generally the difference in the amount of noise that is removed between the mid and high setting is quite small. Personally I tend to avoid using high and stick to low or medium levels. As always good exposure is the best way to avoid noise. Keep your gain and ISO levels low, add light if necessary or use a faster lens, this is much more effective than cranking up the NR.
This has cropped up a few times in the comments and in various user groups so I thought I would go through what you need to do to use a B4 2/3″ lens with the FX9’s S16 2K scan mode.
Not all B4 2/3″ lenses will directly cover the FX9’s Super 16mm sized 2K scan mode as 2/3″ is smaller than S16. 2/3″ lenses are designed to cover 8.8 x 6.6mm and S16 is 12.5 x 7mm. Some lenses might just about cover this as is, with minor vignetting, but most won’t.
The Sony LA-EB1 includes an optical expander that compensates for this (I think it’s about a 1.35x). With the LA-EB1 all B4 2/3″ lenses should work without vignetting and in addition when an ALAC compatible lens is connected to the LA-EB1 the camera will support the ALAC function which reduces many of the aberrations typically seen with B4 lenses. The LA-EB1 needs a power feed (14.4v) to work correctly and to power the lens. It is supplied with a 4 pin hirose cable that is designed to be plugged into the 4 pin hirose power socket on the XDCA-FX9. This also provides the record trigger signal to the camera. If you don’t have an XDCA-FX9 then you will need to source a 4 pin hirose to D-Tap or similar power cable.
If you have a mount adapter that does not have any optical expansion such as the cheaper MTF B4 to E-Mount adapter (MTB4SEM approx $400), if the lens has a 2x extender you can use the lenses extender if the lens doesn’t cover without it. The more expensive MTF MTB4SEMP (approx $1,200) includes an optical expander and with this adapter all B4 lenses should cover the S16 area without needing to use the lenses extender. To get the zoom servo working you will need an adapter that can provide 12v to the lenses 12pin connector.
Whatever lens or adapter you choose, the lens needs to be an HD lens. The better the lens the better the end result, I know that may seem obvious but when you are using either an adapter with an included optical expander or having to use the lenses 2x extender to eliminate vignetting with a straight through adapter any imperfections in the lens and any softness becomes quite obvious. Get a really good lens on a good adapter and the images are perfectly respectable, but a poor lens on an adapter will probably dissapoint.
Sony have today release the version 3 update for the FX9. This is a significant upgrade for the FX9 and I highly recommend all users update their cameras.
The update process is robust and provided you follow the instructions in the PDF guide that is included in the update download package you should not have any problems.
EDIT: I WILL SAY THIS AGAIN – YOU MUST FOLLOW THE INSTRUCTIONS INCLUDED IN THE DOWNLOAD PACKAGE. DO NOT SKIP ANY OF THE STEPS IN THE INSTRUCTIONS. I’m seeing lots of people with failed updates because they are formatting their SD cards on their computer or not turning off the cameras network functions. It’s all in the instructions, the instructions are there to help you, please follow them to the letter. The “root” of a card is the very, very bottom of the cards file structure. It is NOT a folder, anything on the “root” of a card will not be inside a folder of any sort, the root is the bit of the card where the first folders will be, in the case of an SD card formatted in the FX9 the root is where you will find the “PRIVATE” folder. The “root” is NOT the XDROOT folder. And if something does go wrong the instructions tell you how to recover.
Do be aware that when you start the update process the cameras LCD screen will go blank for around 10 minutes and the only clue that all is good will be a flashing red tally light. Just leave the camera alone, go and do something else and come back an hour later. The upgrade will also appear to stall at around the 80% mark. Again, just be patient and wait for the update complete message before turning off the camera.
There are a lot of new features in version 3 but the three that I think most are going to like the most are the Real-Time tracking AF (aka touch tracking), the Anamorphic monitoring modes and the Super 16mm 2K scan mode.
REAL TIME TRACKING AF
The Real Time tracking allows you to use the viewfinders touch screen to touch where you want the camera to focus. A white box will appear where you touch and then the camera will track the touched object while it stays with the frame. To cancel the touch tracking touch on the grey cancel box that appears in the top left of the viewfinder.
In the image above the camera is in Face/Eye priority mode. As the real time tracking AF over-rides the other AF modes, by touching on the book on the book shelf (circled in red) the AF is now focussing on the book and will track the book if the camera pans or if the book were to move through the shot. If the book were to move out of the shot the AF will revert to Face/Eye AF.
When used in conjunction with the Face/Eye AF, if you touch on a face the AF will prioritise that face and track it. If the person is facing the camera and can be identified as an individual face, the face gets saved and a “*” will appear next to the Face AF symbol top left of the VF.
If the person turns away from the camera the focus will then track the persons head, if they turn back towards the camera it tracks their face again. It is even possible to start by touching on the back of a persons head and then as they turn towards the camera the face/eye AF takes over.
The way the camera “registers” faces is changed from previous firmware versions. As above, to save a face simply touch on a face. Touch a different face to save a different face. When a face has been saved a * will appear next the the Face/Eye AF symbol.
In the image below the face has been selected by touching on it and is now saved (note the * symbol circled in red). Not also the tracking symbol indicating that BOTH Face/Eye AF and Tracking are in use.
Whenever you stop the real time tracking the saved face is removed from the camera.
If you are using Face/Eye ONLY AF then normally the camera will only focus on faces/eyes, but if you touch on an object that isn’t a face then the camera will focus on this object. If you touch on a face then the camera will only focus on that particular face and the AF will halt if the camera can’t see that particular face until you stop the real time tracking AF.
As well as the tracking stop button (top left of the VF, look like a grey box) If you have AF assist enabled, turning the focus ring on the lens will stop the tracking AF. Real-time tracking AF will also stop when a touched object that is not a face leaves the frame or when a button assigned with the Push AF/Push MF function is pressed.
Real-time tracking can also be used when the cameras AF switch is set to MF. If in the menu, under shooting settings, focus, the “Touch Function in MF” setting is set to ON, The real-time touch tracking auto focus will also work when the AF switch on the side of the camera is set to MF. This allows you to use an autofocus lens to focus manually but then instantly switch to real time tracking AF simply by touching the LCD screen. For this to work if the lens has an AF/MF switch the switch on the lens must be set to AF. If using the 28-135mm lense the focus ring must be in the forwards position.
Real time tracking works across the entire frame regardless of the chosen AF frame area. Any objects being tracked must be distinct from the background. Textured, coloured or detailed objects are tracked more easily than plain objects. When using Face/Eye AF not all faces can be saved. To successfully save a face it needs to be facing the camera directly and sufficiently distinct that the camera can identify the eyes, nose and mouth.
ANAMORPHIC MODE
The anamorphic mode is a basic anamorphic monitoring mode for the LCD viewfinder. It has no effect on the recorded files or the SDI/HDMI outputs.
It provides a 1.3x or 2x de-squeeze. The 2x desqueeze function is tailored for 2x anamorphic lenses designed to be used with 35mm film. To use these lenses the camera must be set to 6K Full Frame scan to gain the correct sensor height. This means that when you use a 2x 35mm film anamorphic lens the sensor scan is wider than it really needs to be so there will be some vignetting at the sides of the frame. The 2x de-squeeze function takes this into account and not only de-squeezes the image but also crops the sides to emulate how the footage will look after post production.
If you are using 1.3x lenses then you can use either the Full Frame 6K scan, the FF 5k crop or the S35 4K scan modes, but for 2x anamorphic lenses you will need to use FF 6K scan.
S16 2K Crop.
The S16 2K crop mode allows you to use just the center Super 16mm sized 2K scan area. This mode is actually very useful for shooting at high frame rates above 60fps because unlike the FF 2K or S35 2K scan modes, this mode is using every single pixel within the scan area. As a result there are none of the image artefacts common when shooting at high frame rates using FF 2K or S35 2K. The 2.5x crop (compared to FF) does mean that for wide shots you will need a very wide lens. But where you can use it, this mode is great for better quality slow motion.
The other use for this scan mode is with Super 16mm lenses or with B4 2/3″ ENG lenses via suitable adapters. The image quality in this mode on the FX9 is a little better than the similar mode on the FS7. But you do need to remember that this is a 2K scan, so you will have a little under HD resolution. In addition the cameras noise appears worse in this mode because you are enlarging fewer pixels to fill the screen, so the noise isn’t as fine or refined as in FF 6K or S35 4K. So where possible you want to make sure you use a nice bright exposure for the best results.
The images below were shot with the same 16x ENG zoom lens at its widest and longest focal lengths.
Here is the full list of new features:
S700 Protocol over Ethernet
B4 lens support – S16 scanning mode (up to FHD 180fps) – B4 lens control using with LA-EB1 – ALAC (Auto Lens Aberration Correction) function
Assignable Center Scan
Anamorphic lens support
Clip Naming (Cam ID + Reel#)
Real-time Tracking (touch tracking auto focus)
Additional items can be modified in the Status Screen
SR Live for HDR metadata support
Recording Proxy Clip Real-time Transfer
Camcorder Network Setup using Smartphone App
Remote control using smartphone over USB tethering
USB tethering activated using iOS14 iPhone and iPad
*Network feature above also support C3 Portal (only available in specific countries)
UPDATE – Some issues with the original version of the LUT were found by some users, so I have created a revised version and the revised version is now linked below.
Arri Look LUT’s are clearly very popular with a lot of Sony users, so I have created an Arri-Look LUT for the FX3/FX6/FX9/Venice that can be used to mimic the look from an Arri camera. It is not designed to pretend to be a real Arri camera, but to instead provide an image with the look and feel of an Arri camera but tailored to the Sony sensors.
As usual the LUT is free to download, but if you do find it useful I do ask that you buy me a coffee or other drink as a thank you. All contributions are always most welcome. Additionally do let me know what you like about this LUT or don’t like, so I can look at what LUTs may be good to create in the future.
There is a bug in some versions of DaVinci Resolve 17 that can cause frames in some XAVC files to be rendered in the wrong order. This results in renders where the resulting video appears to stutter or the motion may jump backwards for a frame or two. This has now been fixed in version 17.3.2 so all user of XAVC and DaVinci Resolve are urged to upgrade to at least version 17.3.2.
Sadly this is not an uncommon problem. Suddenly and seemingly for no apparent reason the SDI (or HDMI) output on your camera stops working. And this isn’t a new problem either, SDI and HDMI ports have been failing ever since they were first introduced. This issue affects all types of SDI and HDMI ports. But it is more likely with higher speed SDI ports such as 6G or 12G as they operate at higher frequencies and as a result the components used are more easily damaged as it is harder to protect them without degrading the high frequency performance.
Probably the most common cause of an SDI/HDMI port failure is the use of the now near ubiquitous D-Tap cable to power accessories connected to the camera. The D-Tap connector is sadly shockingly crudely designed. Not only is it possible to plug in many of the cheaper ones the wrong way around but with a standard D-Tap plug there is no mechanism to ensure that the negative or “ground” connection of the D-Tap cable makes or breaks before the live connection. There is a however a special but much more expensive D-Tap connector available that includes electronic protection against this very issue (although a great product, even these cannot totally provide protection from a poor ground connection) – see: https://lentequip.com/products/safetap
Imagine for a moment you are using a monitor that’s connected to your cameras SDI or HDMI port. You are powering the monitor via the D-Tap on the cameras battery as you always do and everything is working just fine. Then the battery has to be changed. To change the battery you have to unplug the D-Tap cable and as you pull the D-Tap out, the ground pin disconnects fractionally before the live pin. During that extremely brief moment there is still positive power going to the monitor but because the ground on the D-Tap is now disconnected the only ground route back to the battery becomes via the SDI/HDMI cable and back through the camera. For a fraction of a second the SDI/HDMI cable becomes the power cable and that power surge blows the SDI/HDMI driver chip or damages the cameras motherboard.
After you have completed the battery swap, you turn everything back on and at first all appears good, but now you can’t get the SDI or HDMI output to work. There’s no smoke, no burning smells, no obvious damage as it all happened in a tiny fraction of a second. The only symptom is a dead SDI or HDMI.
And it’s not only D-Tap cables that can cause problems. A lot of the cheap DC barrel connectors have a center positive terminal that can connect before the outer barrel makes a good connection. There are many connectors where the positive can make before the negative.
You can also have problems if the connection between the battery and the camera isn’t perfect. A D-Tap connected directly to the battery might represent an easier route for power to flow back to the battery if there is corrosion on the battery terminals or a loose batter plate or adapter.
It can also happen when powering the camera and monitor (or other SDI connected devices like a video transmitter or timecode box) via separate mains adapters. The power outputs of most of the small, modern, generally plastic bodied switch mode type power adapters and chargers are not connected to ground. They have a positive and negative terminal that “floats” above ground at some unknown voltage. Each power supplies negative rail may be at a completely different voltage compared to ground. So again an SDI or HDMI cable connected between two devices, powered by different power supplies will act as the ground between them and power may briefly flow down the SDI cable as the SDI cables ground brings both power supply negative rails to the same common voltage. Failures this way are much less common, but they do still occur.
For these reasons you should always connect all your power supplies, power cables, especially D-Tap or other DC power cables first. Avoid using adapters between the battery and the camera as each adapter plate is another possible cause of trouble.
Then while everything remains switched off the very last thing to connect should be the SDI or HDMI cables. Only when everything is connected should you turn anything on. But beware – there is a myth that turning cameras and monitors off before plugging or unplugging is enough to stop this issue. This simply isn’t true because power is fed to the monitor and camera even when they are switched off so power loops and surges can still occur.
If unplugging or re-plugging a monitor (or anything else for that matter) turn everything off first. Do not connect or disconnect anything while any of the equipment is on. Although the greatest moment of risk is the moment you connect or disconnect any power cables such as when swapping a battery where you are using a D-Tap to power any accessories.
So, if changing batteries, switch EVERYTHING off first, then disconnect your SDI or HDMI cables before disconnecting the D-Tap or other power cables. Seriously – you need to do this, disconnect the SDI or HDMI before changing the battery if the D-Tap cable has to be unplugged from the battery. Things are a quite a bit safer if any D-Tap cables are connected directly to the camera or a power plate that remains connected to the camera as this way you can change the battery without needing to unplug the D-Tap cables and this does reduce the risk of issues.
Also inspect your cables regularly, check for damage to the pins and the cable, if you suspect that a cable isn’t perfect – throw it away, don’t take the risk. I’ve seen plenty of examples of D-Tap cables where one of the wires has broken off the connector pins.
A great safety check is to turn on your monitor immediately after connecting the power, but before connecting any SDI or HDMI cables. If the monitor comes on OK, this is evidence that the power is correctly connected. Then you can connect the SDI or HDMI cable. However, while a really good idea, this only indicates that there is some power to the monitor, it does not ensure that the ground connection is 100% OK.
The reason Arri talk about shielded power cables is because most shielded power cables use connectors such as Lemo or Hirose where the body of the connector is grounded to the cable shield. This helps ensure that when plugging the power cable in it is the ground connection that is made first and the power connection after. Then when unplugging the power breaks first and ground after. When using properly constructed shielded power cables with Lemo or Hirose connectors it is much less likely that these issues will occur (but not impossible).
Is this an SDI/HDMI fault?
No, not really. The fault lies in the use of power cables that allow the power to make before the ground or the ground to break before the power. A badly designed power connector often made as cheaply as possible. D-Tap was originally designed to be used to be used with high power video lights, it wasn’t designed to be used with delicate monitors and the design will allow it to be plugged in the wrong way around if you force it.
Additionally it could be user error. I know I’m guilty of rushing to change a battery and pulling a D-Tap connector without first disconnecting the SDI on many occasions, but so far I’ve mostly gotten away with it (I have blown an SDI on one of my Convergent Design Odysseys).
If you are working with an assistant or as part of a larger crew do make sure that everyone on set knows not to plug or unplug power cables or SDI cables without checking that it’s OK to do so – and always unplug the SDI/HDMI before disconnecting or removing anything else.
How many of us have set up a camera, powered it up, got a picture in the viewfinder and then plugged in the monitor via an SDI or HDMI cable? Don’t do it! Plug and unplug in the right order – connect ALL power cables and power supplies first. Check power is going to the camera and check power is going to the monitor by turning them on, then finally plug in the SDI. When removing a battery, unplug the SDI/HDMI, power down the camera and only then remove the D-Tap from the battery.
I was asked by Sony to produce a couple of new LUT’s for them. These LUT’s were inspired by many recent blockbuster movies and have been named “Space Adventure” and “Super Hero”.
Both LUT’s are available for free and there is a link on the page linked below that will allow you to obtain them.
Scroll down to where it says “Stunning Cinematic Colour” and there you will find a video called “Orlaith” that shows both LUT’s applied to the same footage.
Orlaith is a gaelic name and it is pronounced “orla”. It is the name of a mythical golden princess. The short film was shot on a teeny-tiny budget in a single evening with an FX3 and FX6 using S-Log3 and SGamut3.cine. Then the LUTs were applied directly to the footage with no further grading.
Manage your privacy
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional
Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.