Category Archives: Review

Accsoon CineEye 2S

Wireless video transmitters are nothing new and there are lots of different units on the market. But the Accsoon CineEye 2S stands out from the crowd for a number of reasons.

First is the price, at only £220/$300 USD it’s very affordable for a SDI/HDMI wireless transmitter. But one thing to understand is that it is just a transmitter, there is no reciever. Instead you use a phone or tablet to receive the signal and act as your monitor. You can connect up to 4 devices at the same time and the latency is very low.  Given that you can buy a reasonably decent Android tablet or used iPad for £100/$140 these days, it still makes an affordable and neat solution without the need to worry about cables, batteries or cages at the receive end. And most people have an iPhone or Android phone anyway. The Accsoon app includes waveform and histogram display, LUT’s, peaking and all the usual functions you would find on most pro monitors. So it saves tying up an expensive monitor just for a directors preview. You can also record on the tablet/phone giving the ability for the director or anyone else linked to it to independently play back takes as he/she wishes while you use the camera for other things.



Next is the fact that it doesn’t have any fans. So there is no additional noise to worry about when using it. It’s completely silent. Some other units can get quite noisy.

And the best bit: If you are using an iPhone or iPad with a mobile data connection the app can stream your feed to YouTube, Facebook or any similar RMTP service. With Covid still preventing travel for many this is a great solution for an extremely portable streaming solution for remote production previews etc. The quality of the stream is great (subject to your data connection) and you don’t need any additional dongles or adapters, it just works! 

Watch the video, which was streamed live to YouTube with the CineEye 2S  for more information. At 09.12 I comment that it uses 5G – What I mean is that it has 5Ghz WiFi as well as 2.5Ghz Wifi for the connection between the CineEye and the phone or tablet. 5Ghz WiFi is preferred where possible for better quality connections and better range. https://accsoonusa.com/cineeye/

 

Chrosziel FX6 kit and Chrosziel Quick lock Plate

Chrosziel FX6 Kit. Top plate, base plate and arm for the FX6

 

In the video below I take a look at the Chrosziel FX6 kit as well as the Chrosziel Quick Lock plate. The FX6 Kit includes a very nice lightweight top cheese plate that doesn’t get in the way of the existing handle.

There is a lightweight base plate with a highly adjustable soft and comfortable shoulder pad specifically designed for the FX6 that is compatible with Sony VCT type quick release plates (but can also be used with other base plates)  as well as an extension arm and extension cable for the hand grip. 

This versatile kit will be great for anyone wishing to shoulder mount the FX6 as well as those that like to use a VCT quick release plate on a tripod etc. 

Chrosziel Quick Lock Plate and superior alternative to a VCT type QR plate.

 

As an alternative to the usual slightly wobbly Sony VCT quick release plate I also take a look at the Chrosziel Quick Lock Plate. This is designed to replace the Sony style tripod plates and is a significant upgrade. It is vey light but far, far more rigid than a normal VCT plate thanks to a completely redesigned locking system. The Quick Lock Plate is fully compatible with all shoulder mounts and base plates that you would normally use with a VCT plate, not just Chrosziel. While expensive it is a piece of kit that will last for years and years and if you use long lenses or simply want an exceptionally stable mounting system worth every penny.

 

Thoughts on the FX6

I’ve written a review of the FX6 that you can read here.

https://sonycine.com/articles/the-new-sony-fx6—the-definitive-review-by-alister-chapman/

But I thought I would also write more of an opinion piece here. What do I really think about the FX6 and also where does it fit in the grand scheme of things.

Sony FX6 4K Camcorder

 

First off, it is a brilliant little camcorder. But it has to be. There is huge pressure from ever better mirrorless cameras and ever better larger cameras. Red’s Komodo is similarly priced and offers an interesting option if you are a film maker that doesn’t mind adding your own viewfinder etc..

Sony really have packed an amazing set of features into the FX6, S-Cinetone, LUT’s, CineEI all make it a very, very interesting camera for film makers and corporate video producers alike. But the FX6 hasn’t been aimed at broadcasters, the lack of interlace recording and the lack of a streaming function make it less desirable for news and current affairs. That’s more of the realm of the FX9.

The FX6 is likely to be a huge success. I know I will be getting one. It will be fantastic for my trips overseas where size and weight are important, and I can’t wait to try to shoot the Northern Lights with it. The low light performance is indeed very impressive but this could become a problem area for it.

When you have a camera with a base ISO of 12,800 I think there will be an expectation that you won’t need to light, that it will produce brilliant pictures no matter how dark it is. But you have to remember that one of the keys to getting good results in any light level is not the amount of light but the amount of contrast. You will still need to think about how you add or control the light in your scenes and it will be all too easy to blame the camera when you don’t get great looking pictures on a pitch dark night shoot with no light to add some contrast.

I also think that the gap between 800 ISO and 12,800 ISO is too big. At 12,800 ISO there is so little light that something called Photon Shot Noise becomes an issue. It can make the mid range noisier than you would like it to be, even when you are correctly exposed. And ND filters won’t help as they reduce the light hitting the sensor and the relative photon shot noise increases. But if you do want to shoot in very dark conditions, then the FX6 performance is indeed impressive.

When I had the pre-production FX6 I took it up to the Lake District, shot interiors at home and spent a couple of days examining the images with charts and test scenes. What I learnt was that it is a very easy camera to work with. Changing settings via the touch screen is quick and simple. The single menu button that first brings up what are referred to as status pages on the FX9 and then with a long push brings up the main menus is brilliant. One button for both. No fumbling around going from the status button to the menu button as on the FX9. The auto focus works brilliantly, and I love having a waveform display with the zebra levels clearly indicated on it. It makes judging exposure easy and reliable. Set the zebras to 61% and if you toggle the s709 LUT on and off you can check the brightness of a white card when looking at the S-Log3 or skin tones when looking at the s709.

Going back to the Auto Focus for a moment – Yes, it does work in S&Q and even when shooting UHD 100 or 120fps. BUT I did find it less responsive and slower to respond when shooting at 120fps, it definitely didn’t seem as good as when shooting at normal frame rates. And there are actually a few limitations, AF only works when the shooting frame rate is a direct multiple of the base frame rate.

it also has some other oddities, like the field of view when shooting 17:9  4K DCI is narrower than when shooting ordinary 16:9 UHD because of the way the scan modes work. If you want to output raw the FOV is narrower than when recording UHD internally.

I’m really looking forward to using it on gimbals, lighter weight sliders etc. For those on a tight budget having a lighter camera means you can also save money on your support gear compared to a heavier camera. I think I’m going to enjoy shooting with the FX6 and I’m sure many others will enjoy it to.

And that’s the thing. It’s an easy camera to use, it delivers a beautiful image with very little effort. This is one of it’s big strengths and why I believe it will convert a lot of mirrorless DSLR shooters over to a “proper” video camera. It brings the ease of a built in variable ND filter, LUT’s and other great exposure tools for shooting log, good battery life and pro audio all together in an easy to use package at a good price. At the same time it isn’t so big that you need huge pro tripods and expensive heavy duty support equipment.

It will also appeal to users of Sony’s Venice digital cinema camera to get into places you simply can’t get the bulk of a Venice or as a crash camera for high risk shots. The pictures match close enough that it won’t stand out in a finished production as an obviously different camera.

One issue is the lack of audio inputs when the top handle is removed. This does seem to be an oversight. Gimbal users will find it frustrating I’m sure. Time to break out the external audio recorders, at least the built in scratch mic will help with audio sync. Maybe someone will figure out a way to get audio into the camera body via the connector that the top handle plugs into. The other alternative is to take the video out of the FX6 to an external recorder that also has an audio input such as many of the Atomos recorders.

So where does this leave the FX9? The FX9 is a great camera. It is worth remembering that the FX6 really is Full Frame only (unless you are happy shooting HD in it’s super 35mm mode). So users of normal 35mm PL lenses or APSC lenses will be better off with the FX9 with it’s greater choice of scan modes including 6K FF, 5K crop FF and 4K s35. In the next firmware update the FX9 will also get a 2K s16 center scan mode and it will be able to use the Sony B4 lens adapter with 2/3″ ENG zoom lenses. I still love shooting with my super 35mm Fujinon MK’s on the FX9, it’s a great combination. The FX9 also has no issues with interlace, so news shooters that still need 1080i will want the FX9 and not the FX6. I have every intention of getting an FX6 but I have no plans on parting with my FX9. Because the images from the two cameras look virtually identical they will compliment each other nicely (anyone want to buy my FS5??). 

And that for me is the thing: Two cameras for two different types of shoots, but both look the same, so I can just use whichever is the most appropriate for the job without any concern. 


Core FX9 V-Mount Adapter and Core Hypercore Neo Mini Batteries.

Core FX9 V-Mount adapter with a Hypercore Neo Mini battery on my PXW-FX9

One of the things about the FX9 that makes no sense is it’s external DC input. When you are using just the camera body the FX9 requires a rather odd-ball 19.5 volts to power it via it’s DC in connector. Most cameras have a 12v to 16v input range so they can be used with the multitude of V-Mount or Gold Mount batteries that are common place in the world of professional video. But not the FX9.  The FX9 is also fairly power hungry so the standard BP-U batteries can be a little limiting, especially if you also need to power any accessories as the camera doesn’t have a power output. A V-Mount battery will run the camera for a long time and they generally have D-Tap power outlets, but they are the wrong voltage for the FX9s external input. So if you want to use a V-Mount battery, as I do, then you need not only a mounting plate but also a voltage converter.

The adapter I have chosen to use is manufactured by Core. Why this one? One thing that was important for me is not only to be able to power the camera from a V-Mount battery, but also to be able to power it from a standard external 12 volt power supply such as found in most studios, or something like a car battery. The Core CXV-FX9 adapter includes a voltage regulator that takes the 12 to 16 volt range of a typical Lithium battery and converts it to the 19.5v needed by the FX9. It also has an industry standard 4 pin XLR connector that you can use to power the camera from a 12v external power supply.

The Core FX9 V-Mount adapter has an industry standard 4 pin XLR input for standard 12v power supplies.

Hot Swap:

If you have a power supply connected to the 4 pin XLR you can hot swap the V-Mount batteries. If you have a battery on the adapter you can hot swap to and from the external power. During hot swapping the adapter not only continues to feed the camera with power but also the 2 D-Tap ports on the adapter remain powered.

Low Battery Warning:

One issue that all these adapters have is that they have to convert the battery voltage up to 19.5 volts and this is what is fed to the cameras DC in connector. This means that the camera has no direct connection to the battery, so it has no way to know the charge state of the battery. All you will see in the viewfinder as an indication of the output of the voltage converter. This will remain at a constant 19.5v all the way until the battery is flat and cuts off, at which point the camera will just die. That’s not good, if you are halfway through recording something it could corrupt your media. You won’t have any warning in the camera of the battery going flat.

To try to address this at least in part the Core adapter has an LED light on the operators side that is green when the battery is well charged, but turns to red when there is only around 10% of the batteries capacity left. This does at least give some warning of a battery about to die.

The Core FX9 adapter has an LED battery status indicator that turns red and flashes when the battery voltage gets low.

As well as the adapter, I’m trying out a couple of Core’s Hypercore Neo Mini batteries. These are nice, compact 98Wh batteries. They are UN Tested and certified so meet all the requirements for air travel. These batteries have a clever LCD display that displays the available run time of the battery. This is much more advanced than a simple charge indicator (it has one of those too). The battery actually detects the load being drawn from it. It also knows the exact state of charge of the battery.

Core SWX Hyoercore Neo Mini 98Wh battery with incredibly accurate run time display giving the time in minutes until the battery will be flat based on the cameras power draw.

Using these it is able to calculate with great accuracy how long it will be before it will be flat. I have found this to be remarkably accurate, typically to within just a few minutes. I’ve been using this display to let me know when I need to start thinking about changing the battery. It’s accuracy gives me the confidence to continue shooting until I’m down to the last few minutes of run time. Typically I’m getting around 2.5 hours without the Atomso Ninja recorder and just under 2 hours with the Ninja from one of these excellent little batteries.

Core V-Mount plate for the FX9 showing the lugs that lock into slots in the camera battery compartment to eliminate any flex or wobble.

There are two D-Tap power outlets at the top of the Core FX9 V-Mount plates as well as 3 1/4″ mounting holes for accessories.

Attaching the adapter:

Attaching the adapter to the camera is easy. It uses the same mounting points as Sony’s XDCA extension unit. So there are lugs that slide into slots inside the FX9’s battery compartment as well as two small bolts that attach it to the top of the camera. This makes it incredibly secure with no wobble or other movement. I would have no concerns about supporting the entire camera rig from the battery adapter or adding perhaps a V-Mount wireless video link and then large or heavy batteries behind that. It’s very secure and it looks like it’s meant to be there. Another nice touch is that as well as the 2 D-Tap power ports on the top of the adapter there are also 3 additional 1/4″ mounting points for accessories such as monitors or wireless receivers etc.

I do have one small criticism. The position of the D-Tap ports is quite close to the edge of the adapter. If you are using a tall battery and you have a very fat D-Tap plug they can interfere with each other.

Despite this the Core V-Mount battery adapter gets a big thumbs up from me. The voltage indication is most useful as is the ability to use a normal 4 pin 12v XLR feed.

The Core FX9 V-Mount battery adapter gets a big thumbs up from me.

ACS Technical Panel Review The PXW-FX9

The ACS have produced a video report about some of the testing that they did with a pre-production FX9. It’s quite a long video but has some interesting side by side comparisons with the FS7 which we all already know very well. You’ve heard much of what’s in the video from me already, but I’m a Sony guy, so it’s good to hear the same things from the much more impartial ACS.

With my super geek hat on it was really interesting to see the colour response tests performed by Pawel Achtel ACS at 37.08. These tests use a very pure white light source that is split into the full spectrum and then the monochromatic light is projected onto the sensor. It’s a very telling test. I was quite surprised to see how large the FS7’s response is, it’s not something I have ever had the tools to measure. The test also highlights a lack of far red response from the FS7. It’s not terrible, but does help explain why warm skin tones perhaps don’t always look as nice as they could. I do wonder if this is down to the characteristics of the cameras IR cut filter as we also know the sensor to be quite sensitive to IR. The good news is that the PXW-FX9 has what Pawel claims to be the best colour accuracy of any camera he’s tested, and he’s tested pretty much all of the current cinema cameras. Take a look for yourself.

Sony FX9 ACS Roundtable from ACS on Vimeo.

New Atomos Shogun 7 with Dolby Vision Out and 15 stop screen.

So this landed in my inbox today. Atomos are releasing what on paper at least is a truly remarkable new recorder and monitor, the Shogun 7.

For some time now the Atomos Inferno has been my go-to monitor. It’s just so flexible and the HDR screen is wonderful. But the new Shogun 7 looks to be quite a big upgrade.

The screen is claimed to be able to display an astounding 1,000,000:1 contrast ratio and 15+ stops of dynamic range. That means you will be able to shoot in log with almost any camera and see the log output 1:1. No need to artificially reduce the display range, no more flat looking log or raw, just a real look at what you are actually shooting.

I’m off to NAB at the weekend and I will be helping out on the Atomos booth, so I will be able to take a good look at the Shogun 7. If it comes anywhere near to the specs in the press release it will be a must-have piece of kit whether you shoot on an FS5 or Venice!

Here’s the the press release:

Melbourne, Vic – 4 April, 2019:

The new Atomos Shogun 7 is the ultimate 7-inch HDR monitor, recorder and switcher. Precision-engineered for the film and video professional, it uses the very latest video technologies available. Shogun 7 features a truly ground-breaking HDR screen – the best of any production monitor in the world. See perfection on the all-new 1500nit daylight-viewable, 1920×1200 panel with an astounding 1,000,000:1 contrast ratio and 15+ stops of dynamic range displayed. Shogun 7 will truly revolutionize the on-camera monitoring game.

Bringing the real world to your monitor

With Shogun 7 blacks and colors are rich and deep. Images appear to ‘pop’ with added dimensionality and detail. The incredible Atomos screen uses a unique combination of advanced LED and LCD technologies which together offer deeper, better blacks than rival OLED screens, but with the much higher brightness and vivid color performance of top-end LCDs. Objects appear more lifelike than ever, with complex textures and gradations beautifully revealed. In short, Shogun 7 offers the most detailed window into your image, truly changing the way you create visually.

The Best HDR just got better

A new 360 zone backlight is combined with this new screen technology and controlled by the Dynamic AtomHDR engine to show millions of shades of brightness and color, yielding jaw-dropping results. It allows Shogun 7 to display 15+ stops of real dynamic range on-screen. The panel is also incredibly accurate, with ultra-wide color and 105% of DCI-P3 covered. For the first time you can enjoy on-screen the same dynamic range, palette of colors and shades that your camera sensor sees. 

On-set HDR redefined with real-time Dolby Vision HDR output

Atomos and Dolby have teamed up to create Dolby Vision HDR “live” – the ultimate tool to see HDR live on-set and carry your creative intent from the camera through into HDR post production. Dolby have optimised their amazing target display HDR processing algorithm and which Atomos have running inside the Shogun 7. It brings real-time automatic frame-by-frame analysis of the Log or RAW video and processes it for optimal HDR viewing on a Dolby Vision-capable TV or monitor over HDMI. Connect Shogun 7 to the Dolby Vision TV and magically, automatically, AtomOS 10 analyses the image, queries the TV, and applies the right color and brightness profiles for the maximum HDR experience on the display. Enjoy complete confidence that your camera’s HDR image is optimally set up and looks just the way you wanted it. It is an invaluable HDR on-set reference check for the DP, director, creatives and clients – making it a completely flexible master recording and production station.

“We set out to design the most incredibly high contrast and detailed display possible, and when it came off the production line the Shogun 7 exceeded even our expectations. This is why we call it a screen with “Unbelievable HDR”. With multi-camera switching, we know that this will be the most powerful tool we’ve ever made for our customers to tell their stories“, said Jeromy Young, CEO of Atomos.

Ultimate recording

Shogun 7 records the best possible images up to 5.7kp30, 4kp120 or 2kp240 slow motion from compatible cameras, in RAW/Log or HLG/PQ over SDI/HDMI. Footage is stored directly to reliable AtomX SSDmini or approved off-the-shelf SATA SSD drives. There are recording options for Apple ProRes RAW and ProRes, Avid DNx and Adobe CinemaDNG RAW codecs. Shogun 7 has four SDI inputs plus a HDMI 2.0 input, with both 12G-SDI and HDMI 2.0 outputs. It can record ProRes RAW in up to 5.7kp30, 4kp120 DCI/UHD and 2kp240 DCI/HD, depending on the camera’s capabilities. 10-bit 4:2:2 ProRes or DNxHR recording is available up to 4Kp60 or 2Kp240. The four SDI inputs enable the connection of most Quad Link, Dual Link or Single Link SDI cinema cameras. With Shogun 7 every pixel is perfectly preserved with data rates of up to 1.8Gb/s.

Monitor and record professional XLR audio

Shogun 7 eliminates the need for a separate audio recorder. Add 48V stereo mics via an optional balanced XLR breakout cable. Select Mic or Line input levels, plus record up to 12 channels of 24/96 digital audio from HDMI or SDI. You can monitor the selected stereo track via the 3.5mm headphone jack. There are dedicated audio meters, gain controls and adjustments for frame delay.

AtomOS 10, touchscreen control and refined body

Atomos continues to refine the elegant and intuitive AtomOS operating system. Shogun 7 features the latest version of the AtomOS 10 touchscreen interface, first seen on the award-winning Ninja V. Icons and colors are designed to ensure that the operator can concentrate on the image when they need to. The completely new body of Shogun 7 has a sleek Ninja V like exterior with ARRI anti-rotation mounting points on the top and bottom of the unit to ensure secure mounting. 

AtomOS 10 on Shogun 7 has the full range of monitoring tools that users have come to expect from Atomos, including Waveform, Vectorscope, False Color, Zebras, RGB parade, Focus peaking, Pixel-to-pixel magnification, Audio level meters and Blue only for noise analysis. 

Portable multi-cam live switching and recording for Shogun 7 and Sumo 19

Shogun 7 is also the ultimate portable touch-screen controlled multi-camera switcher with asynchronous quad-ISO recording. Switch up to four 1080p60 SDI streams, record each plus the program output as a separate ISO, then deliver ready-for-edit recordings with marked cut-points in XML metadata straight to your NLE. The current Sumo19 HDR production monitor-recorder will also gain the same functionality in a free firmware update. Sumo19 and Shogun 7 are the ideal devices to streamline your multi-camera live productions. 

Enjoy the freedom of asynchronous switching, plus use genlock in and out to connect to existing AV infrastructure. Once the recording is over, just import the xml file into your NLE and the timeline populates with all the edits in place. XLR audio from a separate mixer or audio board is recorded within each ISO, alongside two embedded channels of digital audio from the original source. The program stream always records the analog audio feed as well as a second track that switches between the digital audio inputs to match the switched feed. This amazing functionality makes Shogun 7 and Sumo19 the most flexible in-the-field switcher-recorder-monitors available.

Shogun 7 will be available in June 2019 priced at $US 1499/ €1499 plus local taxes from authorized Atomos dealers.

Shooting Anamorphic with the Fujinon MK’s and SLR Magic 65 Anamorphot.

There is something very special about the way anamorphic images look, something that’s not easy to replicate in post production. Sure you can shoot in 16:9 or 17:9 and crop down to the typical 2.35:1 aspect ratio and sure you can add some extra anamorphic style flares in post. But what is much more difficult to replicate is all the other distortions and the oval bokeh that are typical of an anamorphic lens.

Anamorphic lenses work by distorting the captured image. Squeezing or compressing it horizontally, stretching it vertically. The amount of squeeze that you will want to use will depend on the aspect ratio of the sensor or film frame. With full frame 35mm cameras or cameras with a 4:3 aspect ratio sensor or gate you would normally use an anamorphic lens that squeezes the image by 2 times. Most anamorphic cinema lenses are 2x anamorphic, that is the image is squeezed 2x horizontally. You can use these on cameras with a 16:9 or 17:9 super35mm sensor, but because a Super35 sensor already has a wide aspect ratio a 2x squeeze is much more than you need for that typical cinema style final aspect ratios of 2.39:1.

For most Super35mm cameras it is normally better to use a lens with a 1.33x squeeze. 1.33x squeeze on Super35 results in a final aspect ratio close to the classic cinema aspect ratio of 2.39:1.

Traditionally anamorphic lenses have been very expensive. The complex shape of the anamorphic lens elements are much harder to make than a normal spherical lens. However another option is to use an anamorphic adapter on the front of an existing lens to turn it into an anamorphic lens. SLR Magic who specialise in niche lenses and adapters have had a 50mm diameter 1.33x anamorphic adapter available for some time. I’ve used this with the FS7 and other cameras in the past, but the 50mm diameter of the adapter limits the range of lenses it can be used with (There is also a 50mm 2x anamorphot for full frame 4:3 aspect ratio sensors from SLR Magic).

Now SLR Magic have a new larger 65mm adapter. The 1.33-65 Anamorphot has a much larger lens element, so it can be used with a much wider range of lenses. In addition it has a calibrated focus scale on it’s focus ring. One thing to be aware of with adapters like these is that you have to focus both the adapter and the lens you are using it on. For simple shoots this isn’t too much of a problem. But if you are moving the camera a lot or the subject is moving around a lot, trying to focus both lenses together can be a challenge.

The SLR Magic 1.33-65 Anamorphot anamorphic adapter.

Enter the PD Movie Dual Channel follow focus.

The PD Movie Dual follow focus is a motorised follow focus system that can control 2 focus motors at the same time. You can get both wired and wireless versions depending on your needs and budget. For the anamorphic shoot I had the wired version (I do personally own a single channel PD Movie wireless follow focus). Setup is quick and easy, you simply attach the motors to your rods, position the gears so they engage with the gear rings on the lens and the anamorphot and press a button to calibrate each motor. It takes just a few moments and then you are ready to go. Now when you turn the PD Movie focus control wheel both the taking lens and the anamorphot focus together.

I used the anamorphot on both the Fujinon MK18-55mm and the MK50-135mm. It works well with both lenses but you can’t use focal lengths wider than around 35mm without the adapter some causing vignetting. So on the 18-55 you can only really use around 35 to 55mm. I would note that the adapter does act a little like a wide angle converter, so even at 35mm the field of view is pretty wide. I certainly didn’t feel that I was only ever shooting at long focal lenghts.

The full rig. PMW-F5 with R5 raw recorder. Fujinon MK 18-55 lens, SLR Magic Anamorphot and PD Movie dual focus system.

Like a lot of lens adapters there are some things to consider. You are putting a lot of extra glass in front of you main lens, so it will need some support. SLR magic do a nice support bracket for 15mm rods and this is actually essential as it stops the adapter from rotating and keeps it correctly oriented so that your anamorphic squeeze remains horizontal at all times. Also if you try to use too large an aperture the adapter will soften the image. I found that it worked best between f8 and f11, but it was possible to shoot at f5.6. If you go wider than this, away from the very center of the frame you get quite a lot of softening image softening. This might work for some projects where you really want to draw the viewer to the center of the frame or if you want a very stylised look, but it didn’t suit this particular project.

The out of focus bokeh has a distinct anamorphic shape, look and feel. As you pull focus the shape of the bokeh changes horizontally, this is one of the key things that makes anamorphic content look different to spherical. As the adapter only squeezes by 1.33 this is as pronounced as it would be if you shot with a 2x anamorphic. Of course the other thing most people notice about anamorphic images is lens flares that streak horizontally across the image. Intense light sources just off frame would produce blue/purple streaks across the image. If you introduce very small point light sources into the shot you will get a similar horizontal flare. If flares are your thing it works best if you have a very dark background. Overall the lens didn’t flare excessively, so my shots are not full of flares like a JJ Abrams movie. But when it did flare the effect is very pleasing. Watch the video linked above and judge for yourself.

Monitoring and De-Squeeze.

When you shoot anamorphic you normally record the horizontally squashed image and then in post production you de-squeeze the image by compressing it vertically. Squashing the image vertically results in a letterbox, wide screen style image and it’s called “De-Squeeze”. You can shoot anamorphic without de-sqeezing the image provided you don’t mind looking at images that are horizontally squashed in your viewfinder or on your monitor. But these days you have plenty of monitors and viewfinders that can “de-squeeze” the anamorphic image so that you can view it with the correct aspect ratio. The Glass Hub film was shot using a Sony PMW-F5 recording to the R5 raw recorder. The PMW-F5 has the ability to de-squeeze the image for the viewfinder built in. But I also used an Atomos Shogun Inferno to monitor as I was going to be producing HDR versions of the film. The Shogun Inferno has both 2x and 1.33x de-squeeze built in so I was able to take the distorted S-Log3 output from the camera and convert it to a HDR PQ image and de-squeeze it all at the same time in the Inferno. This made monitoring really easy and effective.

I used DaVinci Resolve for the post production. In the past I might have done my editing in Adobe Premiere and the grading in Resolve. But Resolve is now a very capable edit package, so I completed the project entirely in Resolve. I used the ACES colour managed workflow as ACES means I don’t need to worry about LUT’s and in addition ACES adds a really nice film like highlight roll off to the output. If you have never tried a colour managed workflow for log or raw material you really should!

The SLR Magic 65-1.33 paired with the Fujinon MK lenses provides a relatively low cost entry into the world of anamorphic shooting. You can shoot anywhere from around 30-35mm to 135mm. The PD Movie dual motor focus system means that there is no need to try to use both hands to focus both the anamorphot and the lens together. The anamorphot + lens behave much more like a quality dedicated anamorphic zoom lens, but at a fraction of the cost. While I wouldn’t use it to shoot everything the Anamorphot is a really useful tool for those times you want something different.

Atomos Ninja V, the arctic and the Northern Lights.

I’m sitting here in the UK, Its February and it almost 20c (68f). Very nice indeed for the UK this time of year. Just a couple of weeks ago I was in Northern Norway, up above the arctic circle running one of my annual Northern Lights adventure tours. The weather there was very different. At no time did the temperature get above -15c(5f) and for most of the trip it was around -24c(-11f) both during the day and during the night.

Now, you might consider me a sadist when I say this, but for my Northern Lights trips I normally want it to be -20c or colder. The reason being that when it’s very cold like this we normally get beautifully clear skies. And we need clear skies to see the Aurora.

Everyone all wrapped up for the hour long ride by snow scooter and sledge to the cabins that we stay at.

After many years of taking a full size video camera up to Norway I decided to go light this year and just take my trusty A7S and A6300 cameras. We get around on snow scooters and on sledges towed behind the snow scooters. This can make lugging around a larger camera tricky and there are times when you just can’t take a big camera. But in order to get the very best from these cameras I also decided to take an Atomos Ninja V.

Out and about on the snow scooter. It really is a very beautiful place in the winter.

The Ninja V is the first of a new generation of recorders and monitors from Atomos. It’s much smaller than the Shogun range of recorders making it a better size and weight match for smaller cameras and DSLR’s. It has a very, very nice 5″ screen with a maximum brightness of 1000 Nits. The 1000 Nit output and Atomos’s clever way of driving it means it can display both SDR and HDR images depending on how it is set up. A key difference between the Shogun and the Ninja devices is that the Shoguns have both SDI inputs and HDMI inputs while the Ninja only has an HDMI input. But if your using this with a DSLR than only has an HDMI output, as I was, the lack of SDI connectors is not a problem.

Shooting a sunset with the Ninja V on my A6300. We were way up on the Finnmarksvidda when this image was taken, absolutely in the middle of nowhere and it was -27c!

The build quality of the Ninja V is really good. Most of the body is made of aluminium. The rear part where the slots for the SSD and battery are is made from plastic, but it appears to be a good high quality and tough plastic. A new feature is an “AtomX” expansion port tucked inside the battery compartment. The expansion port allow different modules to be attached to the Ninja V to add functionality such a video over IP (ethernet) using the Newtek NDI protocol for live streaming or to turn the Ninja V into an IP connected monitor. There is also an AtomX sync module that allows you to wirelessly synchronise timecode and control multiple Ninja V”s on a single network and to use Bluetooth remote control. You can find out more about the AtomX modules here https://www.atomos.com/AtomX

Anyway – back to Norway. We were very lucky with the weather, and with the Northern Lights. On the first night at the cabins we stay at the Aurora put on a pretty good display. I was shooting with my Sony A7S with a Sigma Art 20mm f1.4 lens. I was shooting a mix of time-lapse, in which case I simply record the raw frames in the camera on it’s internal SD cards as well as real time video.

The Aurora put on a great display for us on several nights.

The Northern Lights are only rarely very bright. Most of the time they are fairly dim. So I was using the Sigma lens wide open, shooting at 24fps and with the shutter at 1/24th. The adjusting the cameras ISO to get a nice bright image. At times this did mean I was using some very high ISO’s with a lot of gain. Shooting like this is going to put a lot of strain on any codec. But the Long GOP XAVC-S codec used in the A7S is going to be very hard pushed to not introduce a lot of additional artefacts. In addition my older original A7S can only record HD internally.

By using the Ninja V I was able to record video of the Northern Lights in 4K using the ProRes codec. I used ProRes HQ and ProResHQ uses much less compression than XAVC-S. So even though both the internal recordings and the external recordings are limited to 8 bit (due to the cameras HDMI output limitations rather than any limitation of the Ninja) the ProRes recordings are far more robust and will noise reduce in post much better than the XAVC-S.

Just to prove it really was -27c!!

When you’re working outside for extended periods and it’s -27c(-17f) it’s tough on the gear and tough on you. When shooting the Aurora my camera are outside all night, exposed to the cold. Typical problems include frost and ice on the front element of the lens. The moisture from your own body can easily freeze onto the lens if you stand close to the camera. If you look at the lens to check it for frost and breath out you will leave it coated in ice.

Wires and cables that are soft and flexible in normal temperatures become as stiff as steel rods and can crack and fracture if you try to bend them. All batteries will loose some of their capacity. Very small batteries are worst affected. Larger batteries tend to fair a bit better, but there is a tremendous difference between the way most cheap budget batteries behave in the cold to good quality brand name batteries. For this reason I power my complete setup from a single PAG PAGLink V-Mount battery. The PAGlink batteries are great for all sorts of different applications, but for these trips a big benefit is that a small plug type charger can be used to charge many PAGlink batteries by stacking the batteries together. Then to power multiple devices I use the clip-on PAG Power hub plate to provide 5V for the camera battery adapters that I use, 12V for the lens heaters I use and another 12V feed for the Ninja V.

This is what the kit looks like when you bring it into the warm after many hours out in the cold. The thing with the yellow strap on the lens is a lens heater to prevent frost from building up on the lens. The lens is a sigma 20mm f1.4, the camera is an A7S and the recorder is the Atomos Ninja V.

After more than a few minutes outside the camera kit itself will have become extremely cold. If you then take that kit inside into a nice warm cabin the warm moist air in the cabin will condense onto the cold camera body. Because the camera body will be extremely cold this will then freeze. Before you know it the camera kit is covered in ice. What you can’t see is that it’s likely that there will also be some ice and moisture inside the camera. It can take hours to warm the camera back up again and get it dried out properly. Bagging the camera before you take it indoors can help, but taking the camera in and out many times over the coarse of a shoot like this can cause a lot of damage. So I prefer to leave all the camera kit outside for the duration of the trip.

Another view of the frozen Ninja V after a night shooting the Aurora. Don’t worry, the screen isn’t damaged, that’s just frost and ice on the screens surface.

This means that when you come to fire it up you are often trying to switch on an absolutely frozen camera. In the past I have had problems with cold recorders that wouldn’t start up. But I’m pleased to report that the Ninja V always came to life no matter how cold it was. Whenever I pressed the record button it went into record. Operating the touch screen in the cold was not an issue. In fact using touch screen gloves, the Ninja was really easy to use. Pressing small fiddly buttons isn’t easy, even with thin gloves, but the touch screen turned out really easy to work with.

A big change on the Ninja V over previous models is the operating system. The new operating system looks really good and is quite logically laid out. Gone is the old AtomHDR slider that changes the brightness of the screen when in HDR. This is replaced with dedicated viewing modes for Native, 709, PQ HDR and HLG HDR and viewing via a LUT. I prefer the new fixed HDR modes over the Atom HDR slider modes as it eliminates the uncertainty that can sometimes creep in when you use a slider to change the brightness of the display. In my case, when shooting during the day using S-Log2 I would simply select S-Log2 as the source and then use PQ to display an HDR image on the screen. At night when shooting the Aurora I used Rec-709.

You can see how the normal size 2.5″ SSD sticks out a bit from the side of the Ninja V. The SSDMini’s don’t stick out in the same way. Also note that even though I am shooting using S-Log2 on the A6300 the Ninja V is showing a nice contrasty image thanks to the PQ HDR display option.

The Ninja V can take the same size 2.5″ SSD caddies as the current Shogun recorders. So I was able to use the SSD’s that I already own. However to keep the size of the recorder down it has been designed around a new slightly shorty SSD form factor called SSDMini. When you use a standard size 2.5″ SSD it does stick out from the side of the recorder by about 25mm. If you use an SSDMini it doesn’t stick out at all. SSDMini’s are currently being manufactured by Angelbird and Sony. They have the same sata connector as regular 2.5″ SSD’s and the SSDMini’s can also be used on the larger Atomos Shoguns.

A basic lightweight but effective setup. Atomos Ninja V, Sony A6300, Miller Compass 15 head and Solo tripod.

By the time we were ready to leave Norway we had seen the Northern Lights on 3 different nights. By day we had seen some beautiful sunrises as well as other optical effects like sun dogs caused by the light from the sun being refracted by ice crystals in the air. The Atomos Ninja V had impressed me hugely. It just worked perfectly despite the extreme cold. It allowed me to record at higher quality than would have been possible without it and turned out to be easy to operate. What more can you want really?

Fancy joining me on one of these trips? Follow the link to find out more: https://www.xdcam-user.com/northern-lights-expeditions-to-norway/

Out and about with the PXW-Z280.

Sony’s 4K PXW-Z280 handycam.

I have recently returned from a trip around Canada. While I was there I spent some more time shooting with Sony’s new PXW-Z280 handycam camcorder. This neat little camera continues to surprise me. I used a pre-production sample to shoot parts of an airshow in the summer and it worked really well. It was so easy to use, I had forgotten how much quicker it is to work with a camera with a 17x zoom lens compared to a large sensor camera with a very limited zoom range or prime lenses.

The Z280 uses 3x state of the art EMOR Stacked multi layer sensors. Each is full 4K, so you have full RGB 4K, unlike a single chip camera where the chroma resolution is much reduced by the bayer layout of the pixels. The 3 chip, full resolution design also means no aliasing in the color channels as is often typical of single chip designs.

The color splitting prism is more efficient than the absorption color filters on a single chip design, so more light gets to the pixels. The multi layer sensors have very good on-sensor processing so even though the pixels are rather small you get good sensitivity, low noise and good DR. The Z280 is approx  650-700 ISO with the base gammas so very close to an FS7 with it’s standard gammas and the colors match an FS7  extremely well. The picture look really nice.

3x 4K sensors, 17x zoom and variable ND filter is a great combination on the PXW-Z280

From the testing I have done in the cameras dedicated HDR mode, where you can choose between HLG and S-Log3, with S-Log3 the DR of the Z280 appears to be around 13 stops, which is really quite remarkable for this type of camcorder. The sensor readout is very fast so rolling shutter is minimal.

When you factor in the Z280’s f1.9 lens, compared to an FS7 with the Sony F4 zoom or many other zooms that are typically around F4 the Z280 with it’s f1.9 lens does better in low light and offers similar DoF when both are wide open. Of course you can change the lens on an FS7 and use a faster lens, but then you won’t have anywhere near the zoom range of the Z280.
 

Like any small compact camera, it isn’t 100% perfect. Overall the lens is pretty good for a low cost 4K zoom, but like many 17x zooms it does have a touch of barrel distortion when fully wide. As well as the LCD It has an excellent OLED viewfinder that is much, much better than those typically found on Sony’s smaller cameras. It has Timecode in/out and genlock, all the XAVC-I and L codecs as well as MpegHD. There is a full suite of wifi, LAN and network functions for streaming, ftp and remote control as well as the ability to offload files from the cards to a USB drive or memory stick without a computer. It’s a modern camera designed for the modern news or documentary shooter and a big step up in terms of image quality from the PXW-X200 IMHO.

A full review and sample video will be coming in the very near future with lot’s more information.

Hedén VLC Zoom and Focus Control.

Hedén VLC Zoom and Focus Control.

Sorry for the lack of post recently, but I’ve been busy on various overseas shoots using the Sony Venice camera. I’ll be writing these up in due course.

My 2 favourite and most used lenses are my Fujinon MK zooms . I use the MK18-55 and MK50-135 on both my PMW-F5 and on my FS5. I’ve also used them on a Sony Venice. They are really great lenses. But one thing that I’ve always felt would make them a bit better is a power zoom.

Enter the Hedén VLC system.

Heden servo motor to turn a non servo zoom into a power zoom. In this case on a Fujinon MK18-55 lens.

For starters the Hedén VLC system allows you to turn a non motorised zoom lens into a power zoom lens, but the Heden VLC system is more than just a zoom motor and control box. It can be expanded with a second motor to not only motorize the zoom but also provide an electronic focus control (although as yet I have not tried this).

Never heard of Hedén before? Well if you work in higher end features and productions you will probably have come across them before as they are a highly regarded Swedish manufacturer of electronic follow focus and zoom systems used in high end Cinematography. For me though, until now their products have been beyond my reach. One of their standard follow focus motors costs around £1.6K/$2K. However the motors and components used in the VLC systems are much cheaper, yet still meet Hedén’s exacting standards.  A complete VLC zoom system, including motor, costs around $2,100 USD. It’s still not a “cheap” item, but the system is of very high quality and surprisingly flexible, so it is something that should last many years and work with not just todays cameras and lenses but also whatever comes next.

The VLC system comprises several components. A control box, a motor or motors along with various attachment brackets for the motors depending on your application and a set of cables.

Heden VLC control box.

The first time I played with the system it was an early development unit on my FS5. On the FS5 the system is controlled using the Lanc control functions built into the cameras existing handgrip. The cable from the hand grip that normally plugs directly into the camera body is plugged into a breakout cable from the VLC control box and then another connection from the control box plugs into the FS5. This way the handgrip controls the FS5 as normal, but now the zoom rocker on the handgrip also smoothly and accurately controls the Hedén zoom motor. All the hand grips other functions continue to operate as usual.

The Hedén VM35 servo motor for the VLC zoom and focus system.

The motor used by the VLC system is a very high quality compact servo motor and gearbox with digital position and speed feedback. So the controller knows exactly how fast the motor is turning and where it is in it’s operating cycle. The first time you use the system it needs to be calibrated for the lens you are using. This is done quickly and simply, just by pressing the small CAL button on the controller. Once pressed the motor quickly runs back and forwards to find the lenses end stops.

The CAL button used to calibrate the Hedén VLC zoom system.

A very nice feature is that when the motor isn’t being driven it can be turned quite easily. This means that unlike some other similar systems you don’t have to mechanically or physically disengage the motor from the lenses pitch gears to perform a manual zoom. In fact, the motor acts as a soft damping system and helps make manual zooms smoother.

My only gripe about the VLC system is the size of the control box. On a camera as small as the FS5 the control box is quite a big lump to add.

The Hedén VLC system mounted on an FS5 and Fujinon MK lens.

I have the Hedén VLC control box mounted on the rear of the FS5’s handle using the 3M Dual Lock provided with the kit.

For power I run it from a Dynacore BP-U type battery that has a D-Tap output. There is no on/off switch, so you turn it off by unplugging it, but the system doesn’t use much power and I barely noticed any difference in the life of the camera battery when using it this way.

The control box has controls for the motor speed, torque and direction. These controls allow you to fine tune the way the motor operates, so if you want you can have a fast snappy zoom, or if you prefer you can have a slower zoom. The control buttons are mounted below a soft waterproof membrane to protect the unit from dust and moisture. There is also a small LED display that shows the torque and speed settings. When zooming in or out this also shows the requested zoom speed. All the cables are connected to the box using very high quality Lemo connectors.

The Hedén VLC control box mounted on an FS5

I found that the FS5 zoom rocker with it’s limited travel seemed to work best for me when the motor was set to quite a slow speed. The motor has lots of torque, so it should have no problem driving lenses with quite stiff zoom rings. However I probably wouldn’t try to use it with a DSLR zoom. I dabbled with producing a zoom motor for DSLR zooms some years back, but found it very difficult. Most DSLR zooms are quite stiff, often have tight spots as well as only limited travel. This makes it very difficult to get a very smooth motion. Feel free to try it with whatever lenses it is that you have, but I think you will need to test the functionality with each photo zoom lens to see how it copes. For proper video and cinemas lenses with smooth zoom rings the VLC system should work very well.

With the Fujinon MK lenses the motor can be attached to the barrel of the lens via a dedicated bracket. There is also a bracket for two motors for those that want to motorize not only the zoom but also the focus.

Dual motor bracket for the Fujinon MK lenses allows both a zoom and focus motor to be attached.

The benefit of having the motor on the lens is that it’s always in the right place and you don’t need rails etc. The downside is that if you have more than one lens you need to either, swap the motor and brackets each time you change lens, have multiple brackets or if you have really deep pockets a motor and bracket for every lens. Swapping the motor from bracket to bracket is very quick and easy, just loosen the thumbscrew and the motor slides out. So I would recommend having a bracket on each lens and simply swapping the motor over. The other alternative is to use one of the Hedén rail brackets to attach the motor to 15mm rails, then when you swap lenses the motor stays attached to the rails and it’s just a case of lining the motor up with the pitch gear on the lens.

Rod mount for attaching a single Hedén VLC system motor to a 15mm rod.

 

Not long after starting to use the system on my FS5 I was informed that there was an update for the system that could work with any 3rd party Lanc Controller. So I decided to give this a try on my PMW-F5. To make this work you need an additional aftermarket Lanc zoom controller. These are readily available and there are lots of choices.

The Hedén VLC zoom system mounted on my PMW-F5 and Fujinon MK lens. It’s much easier to find a place for the control box on larger cameras like the F5/F55 and FS7.

The Manfrotto controller I used allowed me to operate the zoom from from the pan bar of my tripod. Great for studio or ENG type applications. The only thing you don’t get with an F5 and a Lanc controller is control over record start and stop as the F5 itself doesn’t support Lanc control. So you still have to press the record button on the camera. But this isn’t a big deal and having the ability to zoom from the pan bar is great for so many applications.

Manfrotto Lanc controller mounted to the tripod pan bar.

Overall I am very impressed with the system. The degree of control you have over the lens is quite remarkable, it’s just as good as the control you get with a high end ENG zoom.  It’s very easy to setup and allows you to perform silky smooth zooms with ease. If you want smooth, slow starts to the zoom or extremely slow zooms, both are easily achieved with the Hedén VLC system.

I probably wouldn’t use it for every shoot, especially with the FS5 as the control box is a little bulky. With the F5 or FS7 and other larger cameras this is much less of a concern, so I will probably use it more often with these cameras. I also want to explore using it with Lanc controller that I can use with handgrips when handheld (perhaps using the Vocas Arri rosette kit for remote attachment of the FS5 hand grip).

The biggest strength of this system for me though, is that it isn’t actually lens or camera specific. You can use it with just about any lens and camera. So as you add more lenses to your collection, or if you change camera, you will still be able to use the VLC system just by making sure you have the right motor bracket. The 15mm rod bracket should work with just about any lens. This means that it’s a system that should last you a very long time.