Tag Archives: FS7

ProRes Raw and Atomos Inferno and Sumo – BIG deal for the FS5 and FS7!!

proresraw-logo ProRes Raw and Atomos Inferno and Sumo - BIG deal for the FS5 and FS7!!Over the last few days there have been various rumours and posts coming from Apple about how they intend to get back to providing decent support for professional users of their computers. Apple have openly admitted that the Trash Can Mac Pro has thermal problems and as a result has become a dead end design, which is why there haven’t been any big updates to the flagship workstation from Apple. Apple have hinted that new workstations are on the way, although it would seem that we won’t see these until next year perhaps.
Another announcement came out today, a new version of FCP-X is to be released which includes support for a new ProRes codec called ProRes Raw. This is BIG!

PRORES RAW.

Raw recordings can be made from certain cameras that have bayer sensors such as the Sony FS5 and FS7. Recording the raw data from the sensor maximises your post production flexibility and normally offers the best possible image quality from the camera. Currently if you record 4K raw with these cameras using an Atomos Shogun or similar the bit rate will be close to 3Gb/s at 24p. These are huge files and the cDNG format used to record them is difficult and clunky to work with.  As a result most users take the raw output from the camera and transform it to S-Log2 or S-Log3 and record it as 10 bit ProRes on the external recorder. This is a bit of a shame as going from 12 bit linear raw to 10 bit S-log means you are not getting the full benefit of the raw output.

Enter ProRes Raw:  ProRes Raw will allow users to record the cameras raw output at a much reduced bit rate with no significant of quality. There are two versions, ProRes Raw and ProRes Raw HQ. The HQ bit rate is around 1Gb/s at 24fps. This is not significantly bigger than the ProRes HQ (880Mb/s) that most users are using now to record the raw, yet the full benefit of 12 bit linear will be retained. A 1TB SSD will hold around an hour of ProRes Raw, compare that to uncompressed raw where you only get around 20 mins and you can see that this is a big step forwards for users of the FS5 in particular.

ProRes Raw (the non HQ version) is even smaller! The files are smaller than typical ProRes HQ files. This is possible because recording raw is inherently more efficient than recording component video.

It is claimed by Apple that ProRes Raw will play back in real time on MacBook Pro’s and iMacs without any additional rendering or external graphics cards, so it obviously isn’t terribly processor intensive. This is excellent news! Within FCP-X the playback resolution can be decreased to bring improved playback performance in less powerful systems or mutistream playback.

It looks like you will be able to record from a 4K DCI  from an FS5 or FS7 at up to 60fps continuously. This breaks through the previous limits for the Shogun of 30fps. The FS7 will be able to record 2K raw at up to 240fps and the FS5 will be able to record 4K raw at 100 and 120fps for 4 seconds. Other raw cameras are also supported by the Atomos recorders at differing frame sizes and frame rates.

At the moment the only recorders listed as supporting ProRes Raw are the Atomos Shogun Inferno and the Sumo19 and it looks like it will be a free update. In addition the DJI Inspire 2 drone and Zenmuse X7 Super 35mm camera will also support ProRes Raw.

Whether you will be able to use ProRes Raw in other applications such as Resolve or Premiere is unclear at this time. I hope that you can (or at least will be able to in the near future).

SEE: Apple Press Release.

SEE: Apple ProRes Raw White Paper

SEE: ATOMOS ProRes Raw INFO PAGE.

 

 

Advertisements

Checking Log exposure with the Hi and Low Key Function on the PXW-FS7, PMW-F5 and PMW-F55

First: If there is something you wish to know about please try the search box to search this web site. You should find a search box on the left of every page when using a normal web browser. If you are using a mobile web browser then the search box will appear towards the bottom of each page, you may need to scroll down to find it, but it’s there.

A great function that allows you to check the extreme ends of your log exposure in the CineEI mode is the Hi/Low Key function. It has to be assigned to a button before you can use it, but it provides a very fast way to check what is really going on in your highlights and shadows. You’ll find all you need to know about High and Low key here.

Scene files for the Sony PXW-FS7M2.

Here are some scene files for the PXW-FS7-II and original PXW-FS7. The first 5 scene files I published a couple of years ago but never got around to converting them over to the PXW-FS7-II. You can download the files in their correct folder structure to put on to an SD card so you can load them directly in to an FS7 or FS7-II. Or you can manually copy the settings from here. If copying the settings in manually I recommend you start by going to the “Files” section of the cameras menu and “Scene File” and import a “standard” default scene file from the cameras internal memory first to ensure you paint settings are at the original factory defaults prior to entering the settings by hand. The easiest way is to load the files linked at the bottom of the page onto an SD card and then go to the files section of the menu to load the scene files into the camera from the SD card.

If you find these useful, please consider buying me a coffee or other drink. It’s always appreciated!


Type



pixel Scene files for the Sony PXW-FS7M2.

The paint settings in for each of these setups are standard except for the items listed in each profile.

Scene File 1: AC-Neutral-HG4.

Designed as a pleasing general purpose look for medium to high contrast scenes. Provides a neutral look with slightly less yellow than the standard Sony settings. I recommend setting zebras to 60% for skin tones or exposing a white card at 75-80% for the best results.

Black: Master Black: -3.  Gamma: HG4 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Standard. User Matrix: ON. Level: 0. Phase: 0.

R-G: +10. R-B: +8. G-R: -12. G-B: -9. B-R: -5. B-G: -15.

Scene File 2: AC-Neutral-HG3

Similar to the above except better suited to lower contrast scenes or lower light levels. Provides a neutral look with slightly less yellow than the standard Sony settings. I recommend setting zebras to 60% for skin tones or exposing a white card at 75-80% for the best results.

Black: Master Black: -3.  Gamma: HG3 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Standard. User Matrix: ON. Level: 0. Phase: 0.

R-G: +10. R-B: +8. G-R: -12. G-B: -9. B-R: -5. B-G: -15.

Scene File 3: AC-FILMLIKE1

A high dynamic range look with film like color. Will produce a slightly flat looking image. Colours are tuned to be more film like with a very slight warm tint. I recommend settings zebras to 57% for skin tones and recording white at 70-75% for the most “filmic” look.

Black: Master Black: -3.  Gamma: HG7 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Cinema. User Matrix: ON. Level: -3. Phase: 0.

R-G: +11. R-B: +8. G-R: -12. G-B: -9. B-R: -3. B-G: -12.

Scene File 4: AC-FILMLIKE2

A high dynamic range look with film like color. Will produce a n image with more contrast than Filmlike1. Colours are tuned to be more film like with a very slight warm tint. I recommend settings zebras to 57% for skin tones and recording white at 70-75% for the most “filmic” look.

Black: Master Black: -3.  Gamma: HG8.  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Cinema. User Matrix: ON. Level: -3. Phase: 0.

R-G: +11. R-B: +8. G-R: -12. G-B: -9. B-R: -3. B-G: -12.

Scene File 5: AC-VIBRANT-HG3

These setting increase dynamic range over the standard settings but also increase the colour and vibrance. Designed to be used for when a good dynamic range and strong colours are needed direct from the camera. Suggested zebra level for skin tones is 63% and white at approx 75-80%.

Black: Master Black: -3.  Gamma: HG3.  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Standard. User Matrix: ON. Level: +23. Phase: -5.

R-G: +12. R-B: +8. G-R: -11. G-B: -6. B-R: -6. B-G: -17.

Scene File 6: AC-VIBRANT-HG4

These setting increase dynamic range over the standard settings but also increase the colour and vibrance. HG4 has greater dynamic range than HG3 but is less bright, so this variation is best for brighter high dynamic range scenes. Designed to be used for when a good dynamic range and strong colours are needed direct from the camera. Suggested zebra level for skin tones is 60% and white at approx 72-78%.Black: Master Black: -3.  Gamma: HG3.  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Standard. User Matrix: ON. Level: +23. Phase: -5.

R-G: +12. R-B: +8. G-R: -11. G-B: -6. B-R: -6. B-G: -17.

Scene File 7: AC-KODAKISH3200K (Include “Scene White Data – ON” when loading from the SD card).

This is a highly experimental scene file that uses a heavily tweaked matrix along with extensive colour adjustments via the multi-matrix. The aim being to reproduce a look reminiscent of Kodak film stock. The white balance is deliberately skewed very slightly bue/teal and then skin tones and orange shades boosted. When loading this scene file from an SD card you must also set “White Data” to ON to import the offset color preset. You can then either use the preset white balance or white balance using memory A/B and a white card. Do NOT use ATW.  This version is intended for use under TUNGSTEN lighting where the white balance would normally be 3200K. Please test that this profile produces a result you like before you start shooting with it as the look is quite strong and may be difficult to change later if you don’t like it. I recommend settings zebras to 57% for skin tones and recording white at 70-75% for the most “filmic” look.

White: Preset White 2800K

Offset White A: ON.  Warm Cool A: -25. Warm Cool Balance A: +10

Offset White B: ON.  Warm Cool B: -25. Warm Cool Balance A: +10

Black: Master Black: -3.  Gamma: HG4 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Cinema. User Matrix: ON. Level: -10. Phase: 0.

R-G: +61. R-B: +29. G-R: -6. G-B: -35. B-R: +21. B-G: -5.

MultiMatrix: ON

B: Hue -18, Saturation 0.

B+: Hue +5, Saturation 0.

MG-: Hue +5, Saturation 0.

MG: Hue +5 Saturation -7.

MG+: Hue 0, Saturation -3.

R: Hue -21, Saturation +65.

R+: Hue +0, Saturation +99.

YL-: Hue +39, Saturation +44

YL: Hue 0, Saturation 0.

YL+ Hue +20, Saturation -10.

G-: Hue -71, Saturation 0.

G: Hue -61, Saturation +10.

G+: Hue -23, Saturation +11

CY: Hue -40, Saturation +9.

CY+:Hue -22, Saturation +54.

B-:Hue +20, Saturation -5.

Scene File 8: AC-KODAKISH5600K (Include “Scene White Data – ON” when loading from the SD card).

This is a highly experimental scene file that uses a heavily tweaked matrix along with extensive colour adjustments via the multi-matrix. The aim being to reproduce a look reminiscent of Kodak film stock. The white balance is deliberately skewed very slightly bue/teal and then skin tones and orange shades boosted. When loading this scene file from an SD card you must also set “White Data” to ON to import the offset color preset. You can then either use the preset white balance or white balance using memory A/B and a white card. Do NOT use ATW.  This version is intended for use under daylight lighting where the white balance would normally be 5600K/6000K. Please test that this profile produces a result you like before you start shooting with it as the look is quite strong and may be difficult to change later if you don’t like it. I recommend settings zebras to 57% for skin tones and recording white at 70-75% for the most “filmic” look.

White: Preset White 4900K

Offset White A: ON.  Warm Cool A: -25. Warm Cool Balance A: +10

Offset White B: ON.  Warm Cool B: -25. Warm Cool Balance A: +10

Black: Master Black: -3.  Gamma: HG4 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Cinema. User Matrix: ON. Level: -10. Phase: 0.

R-G: +61. R-B: +29. G-R: -6. G-B: -35. B-R: +21. B-G: -5.

MultiMatrix: ON

B: Hue -18, Saturation 0.

B+: Hue +5, Saturation 0.

MG-: Hue +5, Saturation 0.

MG: Hue +5 Saturation -7.

MG+: Hue 0, Saturation -3.

R: Hue -21, Saturation +65.

R+: Hue +0, Saturation +99.

YL-: Hue +39, Saturation +44

YL: Hue 0, Saturation 0.

YL+ Hue +20, Saturation -10.

G-: Hue -71, Saturation 0.

G: Hue -61, Saturation +10.

G+: Hue -23, Saturation +11

CY: Hue -40, Saturation +9.

CY+:Hue -22, Saturation +54.

B-:Hue +20, Saturation -5.

Scene File 9: AC-Minus-G1

A hand scene file to have for shooting under mixed lights or low quality lights where there is too much green. By using a combination of the FL-Light colour matrix and a custom preset matrix this profile reduces the some problematic green colour cast that can be present. It uses Hypergamma 3 to give a more pleasing highlight roll off and increased dynamic range without reducing the low light performance. Great for office interviews! I recommend setting zebras to 62% for skin tones and recording white (white card) at between 75 and 80% for the best results.

Black: Master Black: -3.  Gamma: HG3 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: FL Light. User Matrix: ON. Level: 0. Phase: 0.

R-G: +10. R-B: +8. G-R: -12. G-B: -9. B-R: -5. B-G: -15.

 

Here are the files ready to load into you own FS7 or FS7II. Click on the link below to get to the download page where you can download a zip file with all of the scene files already in the correct folder structure to place on an SD card. Simply unzip the download and copy the “private” folder to the root of an empty SD card. These scene files have taken a lot of time and effort to develop. I offer them without charge for your own use. If you find them useful please consider buying me a coffee or other drink.


Type



pixel Scene files for the Sony PXW-FS7M2.

If you already have scen files on your own SD card then you can copy my files from either:

PRIVATE/SONY/PRO/CAMERA/PXW-FS7/

or

PRIVATE/SONY/PRO/CAMERA/PXW-FS7M2

To the same folder your own SD card. You can re-number the if you need to. Once the files are on an SD card insert the SD card in to the camera. Go to the “File” menu and “Scene File” and choose “Load from SD Card”.

FS7 – FS7M2 Scene Files

Want to know more – why not come to a workshop:

How does the Panasonic EVA1 stack up against the Sony FS7 and FS5?

This is a question a lot of people are asking. As I’ve mentioned in other recent posts, sensors have reached a point where it’s very difficult to bring out a camera where the image quality will be significantly different from any other on the market for any given price point. Most differences will be in things like codec choices or trading off a bit of extra resolution for sensitivity etc. Other differences will be in the ergonomics, lens mounts and battery systems.

So it’s interesting to see what Keith Mullin over at  Z-Systems thought of the EVA1. Keith knows his stuff and Z-Systems are not tied to any one particular brand.

Overall as expected there isn’t a huge difference in image quality between any of the 3 cameras. The EVA1 seems weaker in low light which is something I would have predicted given the higher pixel count. The dual ISO mode seems not to be anywhere near the same as the really very good dual ISO mode in the Varicam LT.

Why not take a look at the full article and video for yourself. http://zsyst.com/2017/12/panasonic-eva1-first-look/

 

Want to shoot direct to HDR with the PXW-FS7, PMW-F5 and F55?

Sony will be releasing an update for the firmware in the Sony PXW-FS5 in the next few days. This update amongst other things will allow users of the FS5 to shoot to HDR directly using the Hybrid Log Gamma HDR gamma curve and Rec2020 color. By doing this you  eliminate the need to grade your footage and could plug the camera directly in to a compatible HDR TV (the TV must support HLG) and see an HDR image directly on the screen.

But what about FS7 and F5/F55 owners? Well, for most HDR productions I still believe the best workflow is to shoot in S-Log3 and then to grade the footage to HDR. However there may be times when you need that direct HDR output. So for the FS7, F5 and F55 I have created a set of Hybrid Log Gamma LUT’s that you can use to bake in HLG and Rec2020 while you shoot. This gives you the same capabilities as the FS5 (with the exception of the ability to add HLG metadata to the HDMI).

For a video explanation of the process please follow the link to my new Patreon page where you will find the video and the downloadable LUT’s.

What’s the difference between raw and S-Log ProRes – Re: FS5 raw output.

This is a question that comes up a lot.

Raw is the unprocessed (or minimally processed) data direct from the sensor. It is just the brightness value for each of the pixels, it is not a color image, but we know which color filter is above each pixel, so we are able to work out the color later. In the computer you take that raw data and convert it into a conventional color video signal defining the gamma curve and colorspace in the computer.  This gives you the freedom to choose the gamma and colorspace after the shoot and retains as much of the original sensor information as possible.Of course the captured dynamic and color range is determined by the capabilities of the sensor and we can’t magically get more than the sensor can “see”. The quality of the final image is also dependant on the quality of the debayer process in the computer, but as you have the raw data you can always go back and re-encode the footage with a better quality encoder at a later date. Raw can be compressed or uncompressed. Sony’s 12 bit FS-raw when recorded on an Odyssey or Atomos recorder is normally uncompressed so there are no additional artefacts from compression, but the files are large. The 16 bit raw from a Sony F5 or F55 when recorded on an R5 or R7 is made about 3x smaller through a proprietary algorithm.

ProRes is a conventional compressed color video format. So a ProRes file will already have a pre-determined gamma curve and color space, this is set in the camera through a picture profile, scene file or other similar settings at the time of shooting. The quality of the ProRes file is dependant on the quality of the encoder in the camera or recorder at the time of recording, so there is no way to go back and improve on this or change the gamma/colorspace later. In addition ProRes, like most commonly used codecs is a lossy compressed format, so some (minimal) picture information may be lost in the encoding process and artefacts (again minimal) are added to the image. These cannot easily be removed later, however they should not normally present any serious problems.

It’s important to understand that there are many different types of raw and many different types of ProRes and not all are equal. The FS-raw from the FS5/FS7 is 12 bit linear and 12 bit’s are not really enough for the best possible quality from a 14 stop camera (there are not enough code values so floating point math and/or data rounding has to take place and this effects the shadows and low key areas of the image). You really need 16 bit data for 14 stops of dynamic range with linear raw, so if you are really serious about raw you may want to consider a Sony F5 or F55. ProRes is a pretty decent codec, especially if you use ProResHQ and 10 bit log approaches the quality of 12 bit linear raw but without the huge file sizes.  Incidentally there is very little to be gained by going to ProRes 444 when recording the 12 bit raw from an FS5/FS7, you’ll just have bigger files and less record time.

Taking the 12 bit raw from an FS5 and converting it to ProRes in an external recorder has potential problems of it’s own. The quality of the final file will be dependant on the quality of the debayer and encoding process in the recorder, so there may be differences in the end result from different recorders. In addition you have to add a gamma curve at this point so you must be careful to choose the correct gamma curve to minimise concatenation where you add the imperfections of 12 bit linear to the imperfections of the 10 bit encoded file (S-Log2 appears to be the best fit to Sony’s 12 bit linear raw).

Despite the limitations of 12 bit linear, it is normally a noticeable improvement over the FS5’s 8 bit internal UHD recordings, but less of a step up from the 10 bit XAVC that an FS7 can record internally. What it won’t do is allow you to capture anything extra. It won’t improve the dynamic range, won’t give you more color and won’t enhance the low light performance (if anything there will be a slight increase in shadow noise and it may be slightly inferior in under exposed shots). You will have the same dynamic and color range, but recorded with more “bits” (code values to be precise). Linear raw excels at capturing highlight information and what you will find is that compared to log there will be more textures in highlights and brighter parts of your captured scenes. This will become more and more important as HDR screens are better able to show highlights correctly. Current standard dynamic range displays don’t show highlights well, so often the extra highlight data in raw is of little benefit over log. But that’s going to change in the next few years so linear recording with it’s extra highlight information will become more and more important.

What does Rec-2020 on the PXW-FS7 II really mean?

So, as you should have seen from my earlier post Sony has included Rec-2020 as a colorspace in custom mode on the new FS7 II. But what does this mean and how important is it? When would you use it and why?

Recommendation ITU BT.2020 is a set of standards created by the International Telecommunications Union for the latest and next generation of televisions. Within the standard there are many sub-standards that define things such as bit depth, frame size, frame rates, contrast, dynamic range and color.

Sony-Colorspaces-1024x815 What does Rec-2020 on the PXW-FS7 II really mean?
The colorspaces that Sony’s cameras can capture.

The Rec-2020 addition in the the FS7 II specifically refers to the color space that is recorded, determining the range of colors that can be recorded and the code values used to represent specific tones/hues.

First of all though it is important to remember that the FS7 II shares the same sensor as the original FS7, the FS5 and F5. Sony has always stated that this sensor is essentially a “709” sensor. The sensor in Sony’s PMW-F55 can capture a much greater color range (gamut) than the F5, FS5 and FS7, only the F55 can actually capture the full Rec-2020 color space, the FS7 II sensor cannot. It’s very difficult to measure the full color gamut of a sensor, but from the tests that I have done with the F5 and FS7 I estimate that this sensor can capture a color gamut close to that of the DCI-P3 standard, so larger than Rec-709 but not nearly as large as Rec-2020 (I’d love someone to provide the actual color gamut of this sensor).

So given that the FS7 II’s sensor can’t actually see colors all that far beyond Rec-709 what is the point of adding Rec-2020 recording gamut as the camera can’t actually fill the recording Gamut? Similarly the F5/FS5/FS7 cannot fill S-Gamut or S-Gamut3.

The answer is – To record the colors that are captured with the correct values. If you capture using Rec-709 and then play back the Rec-709 footage on a Rec-2020 monitor the colors will look wrong. The picture will be over saturated and the hues slightly off. In order for the picture to look right on a Rec-2020 monitor you need to record the colors at the right values. By adding Rec-2020 to the FS7 II Sony have given users the ability to shoot Rec-2020 and then play back that content on a Rec-2020 display and have it look right. You are not capturing anything extra (well, maybe a tiny bit extra), just capturing it at the right levels so it at least looks correct.

As well as color, Rec-2020 defines the transfer functions, or gamma curves to you and me, that should be used. The basic transfer function is the same as used for Rec-709, so you can use Rec-709 gamma with Rec-2020 color to get a valid Rec-2020 signal. For full compatibility this should be 3840×2160 progressive and 10bit (the Rec-2020 standard is a minimum of 10bit and as well as 3840×2160 also includes 7680×4320).

But, one of the hot topics right now in the high quality video world is the ability to display images with a much greater dynamic range than the basic Rec-709 or Rec-2020 standards allow. There is in fact a new standard called Rec-2100 specifically for HDR television. Rec-2100 uses the same colorspace as Rec-2020 but then pairs that bigger colorspace with either Hybrid Log Gamma or ST2084 gamma, also know as PQ (Perceptual Quantiser). As the FS7 II does not have PQ or HLG as gamma curves you cannot shoot material that is directly compatible with Rec-2100. But what you can do is shoot using S-Log2/S-Log3 with S-Gamut/S-Gamut3/SGamut3.cine which will give you the sensors full colorspace with the sensors full 14 stop dynamic range. Then in post production you can grade this to produce material that is compatible with the Rec-2100 standard or the Rec-2020 standard. But of course you can do this with an original FS7 (or F5) too.

So, when would you actually  use the FS7 II’s Rec-2020 colorspace rather than S-Log/S-Gamut?

First of all you don’t want to use it unless you are producing content to be shown on Rec-2020 displays. Recording using Rec-2020 color gamut and then showing the footage on a Rec-709 display will result in washed out colors that don’t look right.

You would probably only ever use it if you were going to output directly from the camera to a monitor that only supports Rec-2020 color or for a project that will be specifically shown on a standard dynamic range Rec-2020 display. So, IMHO this extra colorspace is of very limited benefit. For most productions regular Rec-709 or S-Log/S-Gamut will still be the way forward unless Sony add Hybrid Log Gamma or PQ gamma to the camera as well. Adding HLG or PQ however has problems of it’s own as the existing viewfinders can only show standard dynamic range images, so an external HDR capable monitor would be needed.

Rec-2020 recording gamut is a nice thing to have and for some users it may be important. But overall it’s not going to be a deal breaker if you only have a standard FS7 as the S-Log workflow will allow you to produce Rec-2020 compatible material.

 

 

PXW-FS7 firmware version 4.0 now available to download.

FS7-Firmware-V4 PXW-FS7 firmware version 4.0 now available to download.Sony have released firmware update version 4.0 for the PXW-FS7. This new firmware brings some welcome updates to the FS7 including the ability to move the focus magnification area away from the center of the screen.  Other new features include true 24p (as well as 23.98fps).

1. Support for Flexible Spot in Focus setting.
2. Support for XAVC-I 4K 24.00P.
3. Display for Video Signal Monitor is improved.
4. Operability of S&Q setting by assignable button is improved.
5. Remove Basic Authentication from items saved in all file.
6. Auto knee stability is improved.
7. Overall stability and operability of the camera is improved.
The firmware can be downloaded from here: https://www.sony.co.uk/pro/support/software/SET_BPE-SS-1238

PXW-FS7 Firmware Version 3.0 Released

fs7-firmware3 PXW-FS7 Firmware Version 3.0 ReleasedGood news. Firmware version 3.0 has just been released for the PXW-FS7. This is a major update for the FS7 and adds some important new features such as a 2K center scan mode that can be used to allow you to use super16 lenses or more importantly eliminate aliasing and moire when shooting above 60fps.

For users of the Cine-EI mode there are major improvements to the usability of the waveform display as this now works with most LUT combinations (but not in S&Q or when outputting 4K). In addition you can now enable noise reduction in Cine EI, although be aware that this may introduce banding artefacts in some situations.

Zebras now go all the way down to 0% so if you want you can use zebras to measure white or grey cards when shooting log or to measure the recommended skin tone levels for S-log (40-55%) and hypergamma (55-60%) recordings.

Also there is a proper time-lapse mode and some improvements to the quality of the raw recordings when using an external recorder raw such as the 7Q.

https://www.sony.co.uk/pro/support/software/SET_BPE-SS-1238

 

More info on CMOS sensor grid artefacts.

Cameras with bayer CMOS sensors can in certain circumstances suffer from an image artefact that appears as a grid pattern across the image. The actual artefact is normally the result of red and blue pixels that are brighter than they should be which gives a magenta type flare effect. However sometimes re-scaling an image containing this artefact can result in what looks like a grid type pattern as some pixels may be dropped or added together during the re scaling and this makes the artefact show up as a grip superimposed over the image.

grid-pattern-1024x576 More info on CMOS sensor grid artefacts.
Grid type artefact.

The cause of this artefact is most likely off-axis light somehow falling on the sensor. This off axis light could come from an internal reflection within the camera or the lens. It’s known that with the F5/F55 and FS7 cameras that a very strong light source that is just out of shot, just above or below the image frame can in some circumstances with some lenses result in this artefact. But this problem can occur with almost any CMOS Bayer camera, it’s not just a Sony problem.

The cure is actually very simple, use a flag or lens hood to prevent off axis light from entering the lens. This is best practice anyway.

So what’s going on, why does it happen?sony-grid-artefact-explained More info on CMOS sensor grid artefacts.

When white light falls on a bayer sensor it passes through color filters before hitting the pixel that measures the light level. The color filters are slightly above the pixels. For white light the amount of light that passes through each color filter is different.  I don’t know the actual ratios of the different colors, it will vary from sensor to sensor, but green is the predominant color with red and blue being considerably lower, I’ve used some made up values to illustrate what is going on, these are not the true values, but should illustrate the point.

In the illustration above when the blue pixel see’s 10%, green see 70% and red 20%, after processing the output would be white. If the light falling on the sensor is on axis, ie coming directly, straight through the lens then everything is fine.

But if somehow the light falls on the sensor off axis at an oblique angle then it is possible that the light that passes through the blue filter may fall on the green pixel, or the light from the green filter may fall on the red pixel etc. So instead of nice white light the sensor pixels would think they are seeing light with an unusually high red and blue component. If you viewed the image pixel for pixel it would have very bright red pixels, bright blue pixels and dark green pixels. When combined together instead of white you would get Pink or Blue. This is the kind of pattern that can result in the grid type artefact seen on many CMOS bayer sensors when there are problems with off axis light.

This is a very rare problem and only occurs in certain circumstances. But when it does occur it can spoil an otherwise good shot. It happens more with full frame lenses than with lenses designed for super 35mm or APSC and wide angles tend to be the biggest offenders as their wide Field of View  (FoV) allows light to enter the optical path at acute angles. It’s a problem with DSLR lenses designed for large 4:3 shaped sensors rather than the various wide screen format that we shoot video in today. All that extra light above and below the desired widescreen frame, if it isn’t prevented from entering the lens has to go somewhere. Unfortunately once it enters the cameras optical path it can be reflected off things like the very edge of the optical low pass filter, the ND filters or the face of the sensor itself.

The cure is very simple and should be standard practice anyway. Use a sun shade, matte box or other flag to prevent light from out of the frame entering the lens. This will prevent this problem from happening and it will also reduce flare and maximise contrast. Those expensive matte boxes that we all like to dress up our cameras with really can help when used and adjusted correctly.

I have found that adding a simple mask in front of the lens or using a matte box such as any of the Vocas matte boxes with eyebrows will eliminate the issue. Many matte boxes will have the ability to be fitted with a 16:9 or 2.40:1 mask ( also know as Mattes hence the name Matte Box) ahead of the filter trays. It’s one of the key reason why Matte Boxes were developed.

IMG_1022 More info on CMOS sensor grid artefacts.
Note the clamp inside the hood for holding a mask in front of the filters on this Vocas MB216 Matte Box. Not also how the Matte Box’s aperture is 16:9 rather than square to help cut out of frame light.
SMB-1_mpa_04-1024x576 More info on CMOS sensor grid artefacts.
Arri Matte Box with Matte selection.

You should also try to make sure the size of the matte box you use is appropriate to the FOV of the lenses that you are using. An excessively large Matte Box isn’t going to cut as much light as a correctly sized one.  I made a number of screw on masks for my lenses by taking a clear glass or UV filter and adding a couple of strips of black electrical tape to the rear of the filter to produce a mask for the top and bottom of the lens. With zoom lenses if you make this mask such that it can’t be seen in the shot at the wide end the mask is effective throughout the entire zoom range.

f5-f55-mask More info on CMOS sensor grid artefacts.

Many cinema lenses include a mask for 17:9 or a similar wide screen aperture inside the lens.