Category Archives: Scene Files and Luts

Venice Look LUT’s For 14 stop cameras A7, FS5, FS7, F5, F55 etc.

Hello all. So after numerous problems for some people trying to download the official Sony s709 LUT for Venice, I decided to create my own Venice Look LUT’s. These LUT’s have been created using image matching techniques plus some small tweaks and adjustments to make the LUT’s work well with the 14 stop cameras.

Venice is a 15 stop camera with a new sensor and as a result the official s709 LUT’s are not quite right for the current 14 stop cameras like the FS5, PMW-F55, FS7 and even the A7 series. So the LUT that I have created is slightly different to allow for this.

The end result is a LUT that gets you really close to the way Venice looks. It won’t magically turn your FS5 into a Venice, there is something very, very nice about the way Venice handles the extremes of it’s dynamic range, plus Venice has Sony’s best colour filters (similar to the F55 and F65). So Venice will always be that one very nice step up. But these LUT’s should get you close to the default Venice 709 look. This LUT should NOT be used with Venice as it this LUT is restricted to 14 stops.

Of course do remember that the default look and indeed the official s709 LUT was designed as a first pass look. An instant viewing output for a DIT or for on set viewing. It is not really meant to be the final finished look. It would be normal to grade the Venice material, perhaps from scratch rather than using the s709 LUT for the final output. But, s709 is what comes out of the cameras SDI connectors if you use the default LUT/Look. This is what this LUT set mimics, with some tweaks for the lower cost cameras.

This is one of the largest and most comprehensive LUT sets I have ever created. There are versions designed specifically for grading in Resolve or other grading suites. The bulk of the LUT’s are designed to be used with S-Log3 and SGamut3.cine. There are monitoring versions with offsets for use in monitors such as the Atomos range. I have created a set with offsets for both the Zacuto and Small HD viewfinders and monitors and finally I have also created sets of LUT’s for use with S-Log2 so users of the original A7s or those that wish to shoot with S-Log2 on an 8 bit camera are not left out.

The LUT’s work best with the PMW-F55 as this has the closest native color to the Venice camera, but I think they work really well on the rest of the Sony range.

If you find the LUT’S useful, please consider buying me a beer or a coffee using the “Buy Now” button below. There are different drink options depending on what you feel is fair, it takes time to prepare these and there are costs associated with hosting the files. I’m not paid to run this website and every little bit helps and is greatly appreciated.

If you don’t wish to buy me a coffee, that’s cool. But please don’t host the files elsewhere. Feel free to link back here and share the link, but please don’t distribute these anywhere else.

Here’s the link to the zip file containing the my Venice Look LUT set:

Click Here to download Alister’s Venice Look LUTs V2

If you are new to XDCAM-USER.COM please take a look around at the various tutorials, guides, tips and tricks that are hosted here. Click on the green search button at the top right to open a search window or follow the links in the drop down menus at the top of the page. Thanks for visiting!

Advertisements

Revised and improved HLG camera LUT for FS7, F5 and F55.

I have created a new and improved HLG camera LUT for the PXW-FS7, PMW-F5 and PMW-F55 cameras. This 3D LUT can be used to shoot HLG directly by baking the LUT in to the recordings in camera. This allows you to create “instant HDR” footage that just like the HLG footage from an FS5 or Z90 does not need to be graded or modified to provide an HDR image on an equipped HDR TV. Skin tones should be exposed at around 55-60% and white at around 70-75%.

Click here to download the LUT AC-HLGSL3-V2.cube

Scene files for the Sony PXW-FS7M2.

Here are some scene files for the PXW-FS7-II and original PXW-FS7. The first 5 scene files I published a couple of years ago but never got around to converting them over to the PXW-FS7-II. You can download the files in their correct folder structure to put on to an SD card so you can load them directly in to an FS7 or FS7-II. Or you can manually copy the settings from here. If copying the settings in manually I recommend you start by going to the “Files” section of the cameras menu and “Scene File” and import a “standard” default scene file from the cameras internal memory first to ensure you paint settings are at the original factory defaults prior to entering the settings by hand. The easiest way is to load the files linked at the bottom of the page onto an SD card and then go to the files section of the menu to load the scene files into the camera from the SD card.

If you find these useful, please consider buying me a coffee or other drink. It’s always appreciated!


Type



pixel Scene files for the Sony PXW-FS7M2.

The paint settings in for each of these setups are standard except for the items listed in each profile.

Scene File 1: AC-Neutral-HG4.

Designed as a pleasing general purpose look for medium to high contrast scenes. Provides a neutral look with slightly less yellow than the standard Sony settings. I recommend setting zebras to 60% for skin tones or exposing a white card at 75-80% for the best results.

Black: Master Black: -3.  Gamma: HG4 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Standard. User Matrix: ON. Level: 0. Phase: 0.

R-G: +10. R-B: +8. G-R: -12. G-B: -9. B-R: -5. B-G: -15.

Scene File 2: AC-Neutral-HG3

Similar to the above except better suited to lower contrast scenes or lower light levels. Provides a neutral look with slightly less yellow than the standard Sony settings. I recommend setting zebras to 60% for skin tones or exposing a white card at 75-80% for the best results.

Black: Master Black: -3.  Gamma: HG3 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Standard. User Matrix: ON. Level: 0. Phase: 0.

R-G: +10. R-B: +8. G-R: -12. G-B: -9. B-R: -5. B-G: -15.

Scene File 3: AC-FILMLIKE1

A high dynamic range look with film like color. Will produce a slightly flat looking image. Colours are tuned to be more film like with a very slight warm tint. I recommend settings zebras to 57% for skin tones and recording white at 70-75% for the most “filmic” look.

Black: Master Black: -3.  Gamma: HG7 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Cinema. User Matrix: ON. Level: -3. Phase: 0.

R-G: +11. R-B: +8. G-R: -12. G-B: -9. B-R: -3. B-G: -12.

Scene File 4: AC-FILMLIKE2

A high dynamic range look with film like color. Will produce a n image with more contrast than Filmlike1. Colours are tuned to be more film like with a very slight warm tint. I recommend settings zebras to 57% for skin tones and recording white at 70-75% for the most “filmic” look.

Black: Master Black: -3.  Gamma: HG8.  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Cinema. User Matrix: ON. Level: -3. Phase: 0.

R-G: +11. R-B: +8. G-R: -12. G-B: -9. B-R: -3. B-G: -12.

Scene File 5: AC-VIBRANT-HG3

These setting increase dynamic range over the standard settings but also increase the colour and vibrance. Designed to be used for when a good dynamic range and strong colours are needed direct from the camera. Suggested zebra level for skin tones is 63% and white at approx 75-80%.

Black: Master Black: -3.  Gamma: HG3.  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Standard. User Matrix: ON. Level: +23. Phase: -5.

R-G: +12. R-B: +8. G-R: -11. G-B: -6. B-R: -6. B-G: -17.

Scene File 6: AC-VIBRANT-HG4

These setting increase dynamic range over the standard settings but also increase the colour and vibrance. HG4 has greater dynamic range than HG3 but is less bright, so this variation is best for brighter high dynamic range scenes. Designed to be used for when a good dynamic range and strong colours are needed direct from the camera. Suggested zebra level for skin tones is 60% and white at approx 72-78%.Black: Master Black: -3.  Gamma: HG3.  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Standard. User Matrix: ON. Level: +23. Phase: -5.

R-G: +12. R-B: +8. G-R: -11. G-B: -6. B-R: -6. B-G: -17.

Scene File 7: AC-KODAKISH3200K (Include “Scene White Data – ON” when loading from the SD card).

This is a highly experimental scene file that uses a heavily tweaked matrix along with extensive colour adjustments via the multi-matrix. The aim being to reproduce a look reminiscent of Kodak film stock. The white balance is deliberately skewed very slightly bue/teal and then skin tones and orange shades boosted. When loading this scene file from an SD card you must also set “White Data” to ON to import the offset color preset. You can then either use the preset white balance or white balance using memory A/B and a white card. Do NOT use ATW.  This version is intended for use under TUNGSTEN lighting where the white balance would normally be 3200K. Please test that this profile produces a result you like before you start shooting with it as the look is quite strong and may be difficult to change later if you don’t like it. I recommend settings zebras to 57% for skin tones and recording white at 70-75% for the most “filmic” look.

White: Preset White 2800K

Offset White A: ON.  Warm Cool A: -25. Warm Cool Balance A: +10

Offset White B: ON.  Warm Cool B: -25. Warm Cool Balance A: +10

Black: Master Black: -3.  Gamma: HG4 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Cinema. User Matrix: ON. Level: -10. Phase: 0.

R-G: +61. R-B: +29. G-R: -6. G-B: -35. B-R: +21. B-G: -5.

MultiMatrix: ON

B: Hue -18, Saturation 0.

B+: Hue +5, Saturation 0.

MG-: Hue +5, Saturation 0.

MG: Hue +5 Saturation -7.

MG+: Hue 0, Saturation -3.

R: Hue -21, Saturation +65.

R+: Hue +0, Saturation +99.

YL-: Hue +39, Saturation +44

YL: Hue 0, Saturation 0.

YL+ Hue +20, Saturation -10.

G-: Hue -71, Saturation 0.

G: Hue -61, Saturation +10.

G+: Hue -23, Saturation +11

CY: Hue -40, Saturation +9.

CY+:Hue -22, Saturation +54.

B-:Hue +20, Saturation -5.

Scene File 8: AC-KODAKISH5600K (Include “Scene White Data – ON” when loading from the SD card).

This is a highly experimental scene file that uses a heavily tweaked matrix along with extensive colour adjustments via the multi-matrix. The aim being to reproduce a look reminiscent of Kodak film stock. The white balance is deliberately skewed very slightly bue/teal and then skin tones and orange shades boosted. When loading this scene file from an SD card you must also set “White Data” to ON to import the offset color preset. You can then either use the preset white balance or white balance using memory A/B and a white card. Do NOT use ATW.  This version is intended for use under daylight lighting where the white balance would normally be 5600K/6000K. Please test that this profile produces a result you like before you start shooting with it as the look is quite strong and may be difficult to change later if you don’t like it. I recommend settings zebras to 57% for skin tones and recording white at 70-75% for the most “filmic” look.

White: Preset White 4900K

Offset White A: ON.  Warm Cool A: -25. Warm Cool Balance A: +10

Offset White B: ON.  Warm Cool B: -25. Warm Cool Balance A: +10

Black: Master Black: -3.  Gamma: HG4 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: Cinema. User Matrix: ON. Level: -10. Phase: 0.

R-G: +61. R-B: +29. G-R: -6. G-B: -35. B-R: +21. B-G: -5.

MultiMatrix: ON

B: Hue -18, Saturation 0.

B+: Hue +5, Saturation 0.

MG-: Hue +5, Saturation 0.

MG: Hue +5 Saturation -7.

MG+: Hue 0, Saturation -3.

R: Hue -21, Saturation +65.

R+: Hue +0, Saturation +99.

YL-: Hue +39, Saturation +44

YL: Hue 0, Saturation 0.

YL+ Hue +20, Saturation -10.

G-: Hue -71, Saturation 0.

G: Hue -61, Saturation +10.

G+: Hue -23, Saturation +11

CY: Hue -40, Saturation +9.

CY+:Hue -22, Saturation +54.

B-:Hue +20, Saturation -5.

Scene File 9: AC-Minus-G1

A hand scene file to have for shooting under mixed lights or low quality lights where there is too much green. By using a combination of the FL-Light colour matrix and a custom preset matrix this profile reduces the some problematic green colour cast that can be present. It uses Hypergamma 3 to give a more pleasing highlight roll off and increased dynamic range without reducing the low light performance. Great for office interviews! I recommend setting zebras to 62% for skin tones and recording white (white card) at between 75 and 80% for the best results.

Black: Master Black: -3.  Gamma: HG3 .  White Clip: OFF.  Aperture : OFF

Matrix: ON. Adaptive Matrix: Off. Preset Matrix: ON. Preset Select: FL Light. User Matrix: ON. Level: 0. Phase: 0.

R-G: +10. R-B: +8. G-R: -12. G-B: -9. B-R: -5. B-G: -15.

 

Here are the files ready to load into you own FS7 or FS7II. Click on the link below to get to the download page where you can download a zip file with all of the scene files already in the correct folder structure to place on an SD card. Simply unzip the download and copy the “private” folder to the root of an empty SD card. These scene files have taken a lot of time and effort to develop. I offer them without charge for your own use. If you find them useful please consider buying me a coffee or other drink.


Type



pixel Scene files for the Sony PXW-FS7M2.

If you already have scen files on your own SD card then you can copy my files from either:

PRIVATE/SONY/PRO/CAMERA/PXW-FS7/

or

PRIVATE/SONY/PRO/CAMERA/PXW-FS7M2

To the same folder your own SD card. You can re-number the if you need to. Once the files are on an SD card insert the SD card in to the camera. Go to the “File” menu and “Scene File” and choose “Load from SD Card”.

FS7 – FS7M2 Scene Files

Want to know more – why not come to a workshop:

Using LUT’s for exposure – choosing the right LUT.

If using a LUT to judge the exposure of a camera shooting log or raw it’s really important that you fully understand how that LUT works.

When a LUT is created it will expect a specific input range and convert that input range to a very specific output range. If you change the input range then the output will range will be different and it may not be correct. As an example a LUT designed and created for use with S-Log2 should not be used with S-Log3 material as the the higher middle grey level used by S-Log3 would mean that the mid range of the LUT’s output would be much brighter than it should be.

Another consideration comes when you start offsetting your exposure levels, perhaps to achieve a brighter log exposure so that after grading the footage will have less noise.

Lets look at a version of Sony’s 709(800) LUT designed to be used with S-Log3 for a moment. This LUT expects middle grey to come in at 41% and it will output middle grey at 43%. It will expect a white card to be at 61% and it will output that same shade of white at a little over 85%. Anything on the S-Log3 side brighter than 61% (white) is considered a highlight and the LUT will compress the highlight range (almost 4 stops) into the output range between 85% and 109% resulting in flat looking highlights. This is all perfectly fine if you expose at the levels suggested by Sony. But what happens if you do expose brighter and try to use the same LUT either in camera or in post production?

Well if you expose 1.5 stops brighter on the log side middle grey becomes around 54% and white becomes around 74%. Skin tones which sit half way between middle grey and white will be around 64% on the LUT’s input. That’s going to cause a problem! The LUT considers anything brighter than 61% on it’s input to be a highlight and it will compresses anything brighter than 61%. As a result on the output of your LUT your skin tones will not only be bright, but they will be compressed and flat looking. This makes them hard to grade. This is why if you are shooting a bit brighter it is much, much easier to grade your footage if your LUT’s have offsets to allow for this over exposure.

If the camera has an EI mode (like the FS7, F5, F55 etc) the EI mode offsets the LUT’s input so you don’t see this problem in camera but there are other problems you can encounter if you are not careful like unintentional over exposure when using the Sony LC709 series of LUTs.

Sony’s  709(800) LUT closely matches the gamma of most normal monitors and viewfinders, so 709(800) will deliver the correct contrast ie. contrast that matches the scene you are shooting plus it will give conventional TV brightness levels when viewed on standard monitors or viewfinders.

If you use any of the LC709 LUT’s you will have a miss-match between the LUT’s gamma and the monitors gamma so the images will show lower contrast and the levels will be lower than conventional TV levels when exposed correctly. LC709 stands for low contrast gamma with 709 color primaries, it is not 709 gamma!

Sony’s LC709 Type A LUT is very popular as it mimics the way an Arri Alexa might look. That’s fine but you also need to be aware that the correct exposure levels for this non-standard LC gamma are middle grey at around 41% and white at 70%.

An easy trap to fall into is to set the camera to a low EI to gain a brighter log exposure and then to use one of the LC709 LUT’s and try to eyeball the exposure. Because the LC709 LUT’s are darker and flatter it’s harder to eyeball the exposure and often people will expose them as you would regular 709. This then results in a double over exposure. Bright because of the intentional use of the lower EI but even brighter because the LUT has been exposed at or close to conventional 709 brightness. If you were to mistakenly expose the LC709TypeA LUT with skin tones at 70%, white at 90% etc then that will add almost 2 stops to the log exposure on top of any EI offset.

Above middle grey with 709(800) a 1 stop exposure change results in an a 20% change in brightness, with LC709TypeA the same exposure change only gives a just over 10% change, as a result over or under exposure is much less obvious and harder to measure or judge by eye with LC709. The cameras default zebra settings for example have a 10% window. So with LC709 you could easily be a whole stop out, while with 709(800) only half a stop.

Personally when shooting I don’t really care too much about how the image looks in terms of brightness and contrast. I’m more interested in using the built in LUT’s to ensure my exposure is where I want it to be. So for exposure assessment I prefer to use the LUT that is going to show the biggest change when my exposure is not where it should be. For the “look” I will feed a separate monitor and apply any stylised looks there. To understand how my highlights and shadows, above and below the LUT’s range are being captured I use the Hi/Low Key function.

If you are someone that creates your own LUT’s an important consideration is to ensure that if you are shooting test shots, then grading these test shots to produce a LUT it’s really, really important that the test shots are very accurately exposed.

You have 2 choices here. You can either expose at the levels recommended by Sony and then use EI to add any offsets or you can offset the exposure in camera and not use EI but instead rely on the offset that will end up in the LUT. What is never a good idea is to add an EI offset to a LUT that was also offset.

Adjusting the Color Matrix

Every now and again I get asked how to adjust the color matrix in a video camera. Back in 2009 I made a video on how to adjust the color matrix in the Sony’s EX series of cameras. This video is just as relevant today as it was then. The basic principles have not changed.

The exact menu settings and menu layout may be a little different in the latest cameras, but the adjustment of the matrix setting (R-G, G-R etc) have exactly the same effect in the latest camera that provide matrix adjustments (FS7, F5, F55 and most of the shoulder mount and other broadcast cameras). So if you want a better understanding of how these settings and adjustment works, take a look at the video.

I’ll warn you now that adjusting the color matrix is not easy as each setting interacts with the others. So creating a specific look via the matrix is not easy and requires a fair bit of patience and a lot of fiddling and testing to get it just right.

Want to shoot direct to HDR with the PXW-FS7, PMW-F5 and F55?

Sony will be releasing an update for the firmware in the Sony PXW-FS5 in the next few days. This update amongst other things will allow users of the FS5 to shoot to HDR directly using the Hybrid Log Gamma HDR gamma curve and Rec2020 color. By doing this you  eliminate the need to grade your footage and could plug the camera directly in to a compatible HDR TV (the TV must support HLG) and see an HDR image directly on the screen.

But what about FS7 and F5/F55 owners? Well, for most HDR productions I still believe the best workflow is to shoot in S-Log3 and then to grade the footage to HDR. However there may be times when you need that direct HDR output. So for the FS7, F5 and F55 I have created a set of Hybrid Log Gamma LUT’s that you can use to bake in HLG and Rec2020 while you shoot. This gives you the same capabilities as the FS5 (with the exception of the ability to add HLG metadata to the HDMI).

For a video explanation of the process please follow the link to my new Patreon page where you will find the video and the downloadable LUT’s.

Video Tutorials for the FS5. Picture Profiles and Raw Recording.

I was recently asked by Sony to produce some videos to help users get the most from the PXW-FS5. The videos and articles can now be found on Sony’s website by following the links below. Part 1 covers the camera setup including using Picture Profiles to change the way the images look. Part 2 covers the special effects modes including S&Q, super-slow-motion, clear image zoom and the variable ND filter. Part 3 looks at the raw option for the FS5.

PXW-FS5 Shooting Tips Part 1. Camera Setup and Picture Settings.

PXW-FS5 Shooting Tips Part 2. Slow and Quick Motion, Variable ND, Clear Image Zoom.

PXW-FS5 Recording Raw and using the Raw output option (Atomos Shogun Flame and Convergent Design Odyssey 7Q used as examples).



Looking For LUT’s for the Sony S-Log2 and S-Log3 Cameras?

This website has a great feature. If you look up in the top left corner of every page you will see a small magnifying glass symbol. If you click on that it will allow you to search the entire site for information… and there’s lots and lots of hint, tips and guides going back many years.

One thing though that a lot of people keep asking about is LUT’s or Look Up Tables. I have lots and they are all (for the moment at least) provided for free. There will be some paid LUT sets coming soon. If you follow the link below you will get a single page that lists all the current LUT articles on the web site. Links to my free LUT sets will be included in these articles.

Remember that LUT’s for S-Log2 and S-Log3 can be used in any camera with S-Log2 or S-Log3. So a LUT for the FS7 can also be used in the FS5 for example.

Here’s the link: http://www.xdcam-user.com/?s=LUT%27s

Picture Profiles for the PXW-FS5.

Caption Picture Profiles for the PXW-FS5.
PXW-FS5 Picture Profiles

The Sony PXW-FS5 is a great little camera. It’s a camera I really enjoy shooting with as I can just grab it and go, picking up some great pictures with the minimum of effort. The built in Picture Profiles offer a wide range of different looks that can be quickly selected by pressing the P Profile button and choosing a profile. But one of the best parts is that you can tweak and adjust each profile to suit different shooting applications.

I tend to leave Picture Profile 7 alone. This is the S-Log2/S-Gamut profile that you must use when shooting raw and S-Log2 is my preferred log curve for shooting 8 bit UHD. But that leaves profiles 1 to 6 to play with and adjust, plus profiles 8 and 9 if you don’t use S-Log3. If you want to go back to the factory settings each profile can be reset individually (using “reset” within the profile settings).

Perhaps the two most challenging situations to shoot in are scenes that are high contrast and bright or low light scenes. Often you may encounter both types of scene on the same shoot, so it would be good if the pictures were at least similar. So we don’t want to use totally different color settings. But you can use different gamma settings to help better deal with the differing lighting levels and contrast ranges.

For brighter scenes I am a big fan of Sony’s “Cinegammas”. The Cinegammas differ from the standard gammas in the way they handle highlights. Basic television gamma has a very limited dynamic range, around 6 stops. Then to extend the dynamic range something called a “knee” is added to the top of the gamma curve. The point where the curve transitions from normal gamma to the knee is called the “knee point”. Everything above the knee is is compressed or squeezed. So in effect below the Knee 1 stop  is record with 1 stops worth of data, but above the knee 3 or 4 stops may be recorded in the same space.

cinegammas-1024x768 Picture Profiles for the PXW-FS5.

In practice this means anything brighter than the knee point will have very little contrast, when you have low contrast it is also hard to see any detail. So the highlights in the image look flat, lack texture and detail. If you have bright skin tones up in the knee they just look like blobs of color. Cotton wool clouds come out as white blobs in the sky and it is the knee that is largely responsible for the “video look”.

Sony’s Cinegammas are different. They do not have a knee. Instead of a hard knee point where you switch instantly from not compressed to compressed they have a slow and gradual transition from not compressed to very compressed. This is not unlike the way film behaves and is typically called a “highlight roll-off”. In practice because this transition is gradual it is less obvious. Because it is less obvious you can start the transition lower down the gamma curve which means you have more recording range for the highlights and can therefore increase the captured dynamic range. But to get the best looking recordings you want to keep faces and skin tones below the more aggressive parts of the roll off, so often you need to expose marginally darker than you would with conventional gamma.

For standard gammas it is typical to set the cameras zebras to 70% and have zebras just starting to appear on skin tones. With the Cinegammas I recommend reducing the zebras to 60%. See this article for more info on the correct exposure http://www.xdcam-user.com/2013/07/correct-exposure-levels-with-sony-hypergammas-and-cinegammas/

If you want to use the Cinegammas and are doing anything for broadcast TV that will not be graded and the video levels corrected to the 100% maximum required for broadcast then you should only ever use Cinegamma 2. All the other Cinegammas allow recording up to 109%.

All the Cinegammas record a similar extended dynamic range, Cinegamma 2 will almost always appear a little darker as it’s recording range is shrunk to ensure it does not exceed 100%., but even though it may appear a little darker, the captured dynamic range is the same.

For brighter scenes Cinegamma 1 is my go-to gamma curve on the FS5. It captures a large dynamic range. For darker scenes I will often use Cinegamma 4 as this raises shadows and the mid range. Cinegamma 4 is also useful for shooting back lit scenes.

Cinegamma 3 is a little more contrasty than Cinegamma 1 so if you want a picture with higher contrast this is the curve you should consider.

What about color?

The standard color mode is OK, but I find it a little gaudy. If you want a more film like look then the Cinema mode works quite well to give a more de-saturated look. But my favourite color mode is the Pro color mode. It’s not as vibrant or highly saturated as the standard or ITU709 color modes but it does produce very accurate colors. It’s a bit less green that the standard color mode. If you want a more vibrant image you can increase the saturation, I find Pro Color at +14 saturation gives great color straight out of the camera.

The Color Depth control is a bit of an odd control. It works by targeting a particular color, but instead of increasing/decreasing the saturation of the color it makes the luminance level of objects that are that color brighter or darker. If you make a red car darker in brightness it makes the color appear stronger relative to the brightness. A positive setting makes the luminance darker, so the color appears stronger, a negative setting makes the luminance brighter so the color appears slightly more washed out.

First the standard look (notice the blobby, flat, no texture look to the clouds from the knee):

standard-1024x576 Picture Profiles for the PXW-FS5.
PXW-FS5 Standard Settings

So, here are some suggested settings for different shooting conditions. Remember, you can mix and match the color and gamma settings, so if you like the colors from one profile you can take the color settings and use them with the contrast settings (gamma, black gamma) of another.

1: AC-GPMC – General purpose, medium contrast (good all-round profile).

Gamma: Cine3, Black Gamma Middle -7, Color Mode Pro, Saturation +16 (substitute Cine3 with Cine2 for direct to air broadcast).

ACGPMC-1024x576 Picture Profiles for the PXW-FS5.
Alister’s PXW-FS5 Profile AC-GPMC

2: AC-GPBT – General purpose for bright high contrast scenes.

Gamma: Cine1, Black Gamma Low -3, Color Mode Pro, Saturation +16 (substitute Cine1 with Cine2 for direct to air broadcast).

ACGPBT-1024x576 Picture Profiles for the PXW-FS5.
Alister’s PXW-FS5 Profile AC-GPBT

3: AC-GPGD – General purpose, looks good direct but good if going to be graded (shadows raised to help in grading)

Gamma: Cine1, Black Gamma Low +4, Color Mode Pro, Saturation 0 (substitute Cine1 with Cine2 for direct to air broadcast).

ACGPGD-1024x576 Picture Profiles for the PXW-FS5.
Alister’s PXW-FS5 profile AC-GPGD

4: AC-GPLL – General purpose profile for darker scenes (raised shadows to make grading easier).

Gamma: Cine4, Black Gamma High +7, Color Mode Pro, Saturation +6 (substitute Cine4 with Cine2 for direct to air broadcast).

ACGPLL-1024x576 Picture Profiles for the PXW-FS5.
Alister’s PXW-FS5 Picture Profile AC-GPLL

5: AC-EXLL – For use in very low light levels (is the equivalent to adding +6db gain, does increase noise).

Gamma: ITU709(800), Black Gamma Low +7, Color Mode Pro, Saturation 0.

ACEXLL-1024x576 Picture Profiles for the PXW-FS5.
Alister’s PXW-FS5 Picture Profile for very low light AC-EXLL

6: AC-ASIA1 – Vibrant colors, slight boost to reds/blues.

Gamma: Cine3, Black Gamma Middle -7, Color Mode ITU709, Saturation +10, Color Depth R+5, G-3, B+2, C+1, M0, Y-2.

ACASIA-1024x576 Picture Profiles for the PXW-FS5.
Alister’s PXW-FS5 Picture Profile AC-ASIA1. Vibrant vivid colors.

AC-FILM1 – Film like color and contrast.

Gamma Cine1, Black Gamma Middle -7, Color Mode Cinema, Saturation +8, Phase -3, Color Depth R+4, G-1, B+1, C0, M0, Y-4.

ACFILM-1024x576 Picture Profiles for the PXW-FS5.
Alister’s PXW-FS5 Picture Profile AC-FILM1, a film-like profile.

 

 

Sony PXW-Z150 Review (with picture settings).

DSC06751-e1470742966440 Sony PXW-Z150 Review (with picture settings).
The Sony PXW-Z150 4K camcorder.

Although it’s been on the market for a while now I have not yet had a chance to write a proper review of the PXW-Z150. I’ve played with it a few times and I’ve felt it offers good value (approx £3k/$4K). As it’s starting to gain some traction amongst corporate producers and those looking for a straight forward 4K camera with lot’s of bang for the buck I though it’s time to share my thoughts.

Cameras like the Z150 are often overlooked these days as they don’t have the “cool” factor that comes with the large sensor Super 35mm cameras that are all the rage, cameras like the PXW-FS5 or FS7.

DSC06737-300x200 Sony PXW-Z150 Review (with picture settings).
Left side of the PXW-Z150

But not everyone wants shallow depth of field all of the time. In addition many people want zoom lenses that can zoom in to get a tight shot and zoom back out smoothly without a focus shift. If you add portability and ease of use into the mix then there is no Super 35mm camera that offers all of these. Want a big par focal zoom range – the lens gets big, heavy and very expensive.

This is where a one piece camera with a fixed zoom lens comes into it’s own. For a fraction of the the price of any of the 10 times or more par-focal S35m zoom lenses you can get a fully functioning camcorder. The PXW-Z150 has a 12x optical zoom that can be boosted up to 24x in HD (more on that later).

DSC06749-e1470743380323 Sony PXW-Z150 Review (with picture settings).
Right side of the PXW-Z150

So lets take a closer look at the Z150.

From the outside the PXW-Z150 resembles many other handycam style cameras and is almost identical to the HXR-NX100. But this is from the PXW product line, I’m lead to believe that stands for “Professional XAVC Writer”. So this means it will have the XAVC codec. It’s also an XDCAM camcorder and in this case that means it also includes the MPEG2 HD codec. In addition in case you haven’t spotted it there is also a big “4K” symbol on the side.

CODECS AND RECORD FORMATS

DSC06726-300x200 Sony PXW-Z150 Review (with picture settings).
The PXW-Z150’s lens hood with built in shutter style lens cap.

So the camera can record UHD (3840 x 2160, the 4K standard for TV) at up to 30fps using Sony’s XAVC-L codec. This is the long GoP version of XAVC and comes in 60 and 100Mb/s versions in the Z150.  It is worth considering that this codec does require a pretty good computer to work with it in post production, ideally a minimum of a 4 core i7 processor with 16GB of main ram plus a good NVIDIA or AMD graphics card with 2GB of dedicated video ram. In UHD XAVC-L is limited to 8 bit 4:2:0, this still produces a great looking image but is not considered good enough for main stream UHD broadcast.

The image below is a UHD frame grab from the Z150. Click on the image to see larger versions including the full 3840×2160 image. The grab is a jpeg so may have some compression artefacts not in the original frame.

full-wide-1024x576 Sony PXW-Z150 Review (with picture settings).
UHD frame grab from the PXW-Z150. Click on the image to see a larger version or to view the full UHD frame.

If you are not shooting in UHD then you have lots of options. Again we have XAVC-L now at 25, 35 and 50Mb/s and up to 60fp. 35Mb/s and 50Mb/s XAVC-L is normally considered broadcast quality at 25/30fps. In HD XAVC-L is 10 bit 4:2:2.

As well as XAVC-L you also have two more 8 bit HD codecs, MPEG2HD and AVCHD. There are two versions of MPEG2HD, the regular HD version which is 4:2:0 at 35Mb/s as found in the older EX1 and EX3 camcorders as well as the 50Mb/s HD422 4:2:2 broadcast quality version as found in the PMW-200 and most of Sony broadcast camcorders. These older MPEG2 “XDCAM” codecs are still incredibly popular and accepted almost everywhere for broadcast HD. They are really easy to use and even though they are 8 bit still give great looking pictures. Finally if you just need something compact there is AVCHD, although frankly why you would want to use AVCHD when you have so many better options available I’m not sure. Perhaps those running older or consumer based edit software will benefit from the inclusion of AVCHD.

RECORDING MEDIA.

In order to be able to record all the different formats available you must use SDXC cards. These are readily available and low cost. Please remember though that SD cards are consumer media. It is normally very reliable (probably more reliable than tape used to be) but card failures can occur and a duff card could result in the loss of everything on the card. Fortunately Sony have considered this and the camera features two card slots.

DSC06735-300x200 Sony PXW-Z150 Review (with picture settings).
The PXW-Z150 has two slots for SDXC cards.

The two card slots can be configured in a number of ways. To record long events you can use relay record where once the first card is full the camera will automatically switch to the second card. For security you can use simultaneous record where you record to both slots at the same time. This means you are creating an instant backup, so the failure of a single card should not be a drama. As a further option you can control the recording function of each card slot separately. You can use the record button on the hand grip to control one slot and the record button on the carry handle to control the other to give 2 independent recordings.

A further recording function is the ability to record a proxy file alongside the main recording. The proxy file can be used in a number of ways. One way is to provide an easier to handle 720p HD file for use as an edit proxy when shooting in UHD. Another is as a small compact file that can be uploaded to the internet via the cameras built in ftp  function, perhaps for a breaking news story or remote editing and preview. As this is a proper video camera there are none of the overheating problems or limited record time issues that effect many DSLR type cameras.

One word of advice: Buy your cards from a reputable source. There is a lot of fake media out there that is almost indistinguishable from the real thing. The fake cards are often unreliable, so do make sure you only buy good quality genuine media from one of the main brands such as Transcend, Lexar, SanDisk etc.

1″ TYPE SENSOR.

The sensor that feeds all these different codecs is a “1 inch type” Exmor RS back illuminated CMOS sensor with 14.2 million effective pixels. What does all that mean?

“1 Inch Type” means the sensor size is bigger than the sensor on a 2/3″ broadcast camera but smaller than APS-C, Micro 4/3rds or Super 35mm (see this for more info on imperial type sensor sizes). So the depth of field will be deeper (more in focus) than a camera like Sony’s PXW-FS5 with it’s Super 35mm sensor, but shallower than most typical 2/3″ ENG broadcast shoulder cameras and other traditional handycams with 1/2″ or 1/3″ sensors.

Exmor RS is Sony’s latest generation of back illuminated sensor technology that gives better low light performance with small pixels compared to traditional front illuminated sensors. In addition RS stands for “Rear Stacked”. The stacking technology allows for a faster sensor readout among other things and this significantly reduces image skew and rolling shutter artefacts compared to the previous generation of these sensors. The faster readout also means that every pixel is used when shooting at up to 120 fps in HD using the cameras super slow motion function (note that this is 120fps interlace XAVC-L), so less aliasing and moire.

While RS does not eliminate rolling shutter artefacts from what I can see the Z150 offers a big improvement over cameras like the PXW-X70 and the A7S. You have to pan very fast before rolling shutter becomes a problem and in normal use skew and jello should not cause any significant problems.

12X OPTICAL ZOOM LENS.

DSC06741-e1470743643268 Sony PXW-Z150 Review (with picture settings).
PXW-Z150’s 12x “G” series optical zoom lens.

Light is fed to the sensor by a 12x optical zoom lens. On the side of the camera there is a big and bold “18X“. That’s there because this camera also has Sony’s clever “Clear Image Zoom” technology. In the past if you mentioned a digital zoom it used to make people cringe as it normally meant a drop in picture quality. But Clear Image Zoom really is very clever.

First of all remember that in HD you have a UHD sensor, so you can crop into this by 2 times with virtually no loss in image quality anyway. So in HD you have an additional 2x zoom on top of the optical zoom giving a combined total of 24x. In UHD the camera uses a database of textures to determine the best way to process the image. This allows for a virtually transparent extra 1.5x electronic zoom on top of the optical one. This gives you the 18x zoom range indicated on the camera body. In use, the clear image zoom function works seamlessly with the optical zoom. So as you zoom in or out the electronic zoom takes over where the optical one finishes.

full-wide-1-300x169 Sony PXW-Z150 Review (with picture settings).
PXW-Z100 full Wide.
12x-zoom-300x169 Sony PXW-Z150 Review (with picture settings).
PXW-Z100 12 x optical zoom (click on image to see higher resolution versions)
18x-zoom-300x169 Sony PXW-Z150 Review (with picture settings).
PXW-Z150 Full 18x zoom, 12x optical plus clear image zoom (click on the image to view higher resolution versions).

There is the very slightest of bumps in the zoom at the changeover point from optical to digital which I don’t think most audiences would spot. After shooting so much recently with Super 35mm cameras I really had forgotten just how much quicker it can be to shoot with a good par-focal zoom with a high zoom ratio (par focal – focus remains constant through the zoom range). The lens is reasonably wide at the equivalent of 29mm  going all the way optically to a 348mm in full frame 35mm terms. The only downside really to the zoom is that the widest aperture ramps from f2.8 to f4.5 as you zoom in. This is one of the penalties you pay for having a larger sensor.

Another slight peculiarity of the aperture is that the minimum is f11. Most lenses go down to f16 or smaller, but this is limited to f11. I suspect this may be to prevent something called diffraction limiting. When light travels though a very small aperture it can become slightly defocussed. When you have very small pixels (like when you cram 4K’s worth of pixels onto a smallish sensor) this slight defocussing has a big impact and can lead to soft and blurry looking pictures. I suspect that Sony may be limiting the smallest aperture to f11 to prevent this and help ensure sharp pictures at all times. If you have too much light then don’t worry as you have a 4 way ND filter system where you can choose between clear, 1/4, 1/16th and 1/64 ND.

DSC06728-300x200 Sony PXW-Z150 Review (with picture settings).
The zoom rocker.

The lens has three control rings. One for aperture, one for zoom and one for focus. Unfortunately none of these have any markings as they are all electronic controls with no direct connection to the mechanics of the lens. Fortunately though the lens is quite responsive. The iris ring works well with almost no lag. The zoom ring is the weakest link as you can turn the zoom ring faster than the lens can zoom and this can result in some lag as you wait for the zoom to catch up. The zoom speed range is pretty good, using the rocker on the hand grip you can go from a very slow creeping zoom to a respectable 2.5 seconds (approx)  from fully wide to 12x.

DSC06740-300x200 Sony PXW-Z150 Review (with picture settings).
There are 3 control rings on the PXW-Z150’s zoom lens.

The focus ring is big and chunky, easy to find and easy to grip. While you can’t crash focus with it the manual focus, it is nice and responsive and doesn’t exhibit any nasty overshoots or other surprises. So manual focussing is nice and easy.  This is assisted by a good viewfinder peaking and a focus magnification system  that helps you determine the sharpest parts of the image with ease. One observation though is that if you leave the peaking on the default “White” setting it can make some scenes appear over exposed as white sparkles appear across areas of fine detail. For this reason I normally use the Red or Blue peaking colors.

INPUT AND OUTPUT CONNECTIONS

DSC06744-300x200 Sony PXW-Z150 Review (with picture settings).
The PXW-Z150’s built in stereo microphone.

For audio there is a built in stereo mic on the front of the handle that is adequate for background and ambient sound recording. You then have the usual 2x XLR connectors with switchable phantom power on the front of the hand grip plus Sony’s MI Shoe on the top. Using the MI Shoe you can connect Sony’s UWP-D radio microphones directly to the camera via a low cost mounting adapter (SMAD-P3) eliminating the need for wires or batteries in the microphone receiver. It’s a very neat system.

DSC06730-300x200 Sony PXW-Z150 Review (with picture settings).
Video output options on the PXW-Z150

To output your pictures you have an HDSDI connector on the rear of the camera for HD plus an HDMI port that can deliver UHD.  There is also a legacy standard definition composite video output, this is one of the few Sony professional cameras to still have this built in. There is of course also a headphone socket on the rear panel of the camera just above the DC in socket.

POWER AND BUILD QUALITY.

DSC06733-300x200 Sony PXW-Z150 Review (with picture settings).
The PXW-Z150 runs off NPF-F type batteries.

The PXW-Z150 runs off readily available and incredibly common  Sony NP-F series batteries. It’s a low power camera so a single battery lasts for ages. I got about 3.5 hours from one of the smaller F770 batteries. An F970 would give at least half a working day, so two of those is all that most people would need.

Build Quality:

When I first picked the camera up it felt good. Like most modern cameras it’s constructed from a mix of plastics and alloy. The plastics appear to be of good quality and it seems to be well constructed. Perhaps not quite as high quality as the PXW-FS5 or FS7 but this is a much cheaper camera.

DSC06738-e1470743903861 Sony PXW-Z150 Review (with picture settings).
Audio switches and controls on the PXW-Z150

Buttons and switches:

There are very few switches on this camera. Just the on/off switch and switches for the audio inputs. But there are plenty of buttons including 6 user assignable buttons. For exposure control you have push buttons that select the gain, white balance and shutter settings and work in conjunction with a small up/down rocker button on the front left of the body. The rocker is used to scroll though the selections available for each of these. In practice this works quite well except that once you select one of these functions, lets say the gain, it remains selected and the rocker switch active unless you press a different function. If you press gain again to try to deselect it, gain will switch to auto and you have to press it again to go back to manual. It’s a minor thing but did result in me ending up accidentally going to auto gain or shutter when I didn’t mean to. I’m sure if you were to use the camera regularly you would soon get used to this.

Iris(aperture) is switched between auto and manual via a dedicated button as is focus. Autofocus works surprisingly well even in low light. It’s not fast but hunting is minimal once it’s focussed and it was able to track moving objects quite well.

While a one inch sensor is bigger than 2/3″ or 1/2″ it’s still significantly smaller than the Super 35mm sensors that are all the range. The Z150 has a lot of pixels squeezed onto quite a small space, so don’t expect amazing low light performance, it’s not that kind of camera. However it’s low light performance is very good for this class of compact all-in-one UHD/4K camera. For all but the most critical applications you can add 12dB of gain without any major dramas to boost the low light performance. +24dB isn’t horrendous if you really have to push the camera and the top limit of +33dB is impressive but rather noisy. In low light the lens works best when it’s wide and at f2.8. Zoom in and it drops down to f4.5 and that does drop your brightness by over a stop or the equivalent of a little over 6dB of gain (1 f-stop = 6dB = Double/half the ISO).

So picture quality… that’s a pretty important factor.

Single small sensor cameras have come a long way in recent years and the Z150 is no exception. The picture quality is pretty good for a budget camera. The smallish sensor with it’s tightly packed and very small pixels does impose some limitations on just how good it can be, especially in dynamic range and sensitivity but it does produce a nice picture for what it is.

Colours are vibrant, noise levels are low and dynamic range perfectly useable. I estimate about 10 stops of dynamic range so it’s not in the same league as the super 35mm cameras, but respectable none the less. Noise levels are low enough that you can afford to slightly under expose the camera and tweak the pictures a little in post production if you need to. This can be useful if you notice the camera is struggling with bright highlights.  I used the cameras built in Histogram to help judge exposure and found that if I had bright highlights such as the bright clouds in the sky as seen in the frame grabs here, that the best results were achieved when ensuring the highlights were below the grey 100% line on the histogram. If you expose the highlights all the way to the far right of the histogram (109%) the highlight areas are flattened by the cameras knee and they can look a bit odd. I felt  it was best to expose just a little lower as this gives better looking highlights (about half to one stop). If using auto exposure, including a -0.5 to -1 EV offset to the auto exposure (in the camera menu) has the same effect. Chromatic aberration is very low, probably being hidden by in camera processing. and the sharpening/detail correction well balanced. The PXW-Z150 creates good looking images for a single smaller chip sensor out of the box.

But as well as the standard look the camera does include 6 picture profiles which can be found towards the bottom of the camera menu. Each profile gives a quite different look.

PP1-wide-e1470738603246 Sony PXW-Z150 Review (with picture settings).
PXW-Z150 Picture Profile 1 (standard camera settings)
question-standard-pp-e1470738724116 Sony PXW-Z150 Review (with picture settings).
PXW-Z150 Picture Profile 1 (standard camera settings)
PP2-wide-e1470738821586 Sony PXW-Z150 Review (with picture settings).
PXW-Z150 Picture Profile 2, DSLR Look.
PP2-e1470739230487 Sony PXW-Z150 Review (with picture settings).
PXW-Z150 Picture Profile 2, DSLR look.
pp3-wide-e1470739114516 Sony PXW-Z150 Review (with picture settings).
PXW-Z150 Picture Profile 3 Rec-709 with Pro Color.
PP3-e1470739346864 Sony PXW-Z150 Review (with picture settings).
PXW-Z150 Picture Profile 3, Rec-709 with Pro Color.
pp4-wide-e1470739442669 Sony PXW-Z150 Review (with picture settings).
PXW-Z150 Picture Profile 4, Rec709.
PP4-e1470739519277 Sony PXW-Z150 Review (with picture settings).
PXW-Z150 Picture Profile 4, Rec709.
pp5-wide-e1470739629529 Sony PXW-Z150 Review (with picture settings).
PXW-Z150, Picture Profile 5, Cinematone 1, Negative Film.
PP5-e1470739709952 Sony PXW-Z150 Review (with picture settings).
PXW-Z150, Picture Profile 5, Cinematone 1, Negative Film.
pp6-wide-e1470739779898 Sony PXW-Z150 Review (with picture settings).
PXW-Z150, Picture Profile 6, Cinematone 2, Print Film.
PP6-e1470739833822 Sony PXW-Z150 Review (with picture settings).
PXW-Z150, Picture Profile 6, Cinematone 2, Print Film.

As you can see each of these looks is quite different (The Z150 also has several different scene settings that can be used for shooting in full auto under differing lighting conditions, these change the way the camera works out the auto exposure levels).

The dynamic range is no different in each profile. PP2, the DSLR look adds contrast by crushing the mid range and blacks, it’s also highly saturated to give stronger colors, particularly reds. The red flower in the frame grab was not that red.

Picture Profile 3 mixes Rec709 gamma with Sony’s “Pro” color matrix. I like the Pro color settings as it gives true to life colors and it grades quite well if you want to make tweaks in post production.

Picture Profile 4 is Rec709 (ITU709) gamma and color. To me the colors are not as accurate as they could be. The flower looks a little too “electric” compared to the real life color.

The Cinematone Gammas in picture profiles 5 and 6 flatten the image a little and bring up the shadows. This can help a little if you wish to tweak or adjust the images in post production. The Cinematone gammas are not the same as the Cinegammas found in the higher dynamic range cameras like the FS5 or A7.

Personally I did not like the colors associated with the Cinematone color settings. But one of the great things about the Picture Profiles is you can mix and match the various gamma curves and color matrix settings to create your own looks and styles. The “Pro” color matrix offers some very accurate colors and I quite like the look that you get when you combine Cinematone 2 gamma with the Pro color matrix. If you find the colors a little flat you can boost the saturation level a bit, I found that setting the saturation to +15 gave a great look straight from the camera. Don’t be afraid to go into the Picture Profile settings and experiment with different combinations of Gamma curve and Color matrix. Just don’t turn up the Saturation too high, I would not recommend going above +20.

DSC06743-300x200 Sony PXW-Z150 Review (with picture settings).
The Z150’s only menu controls are on the top of the handle.

One small annoyance I found with the PXW-Z150 was that the only menu button is up on the top of the hand grip. As I like to fiddle around with the Picture Profile settings I did find it a little awkward to access the menu controls on the very top of the camera, especially if it was at shoulder height or above on a tripod. You can’t see them up there!

Like most modern cameras the PXW-Z150 has a full set of WiFi features including the ability to transfer files wirelessly via ftp to a remote server, to stream live or control the camera from a tablet or mobile phone. A future firmware update will add Sony’s QoS (Quality Of Service) streaming error correction that promises much improved image quality over poor network connections when streaming to a Sony QoS server. To remotely control the camera you need to install Content Browser Mobile on your Android or iOS device.

SUPER SLOW MOTION

One more trick that the PXW-Z150 has is the ability to shoot continuously at up to 120fps (100fps when the camera is set to 50i area). The image is full HD but more highly compressed than the regular HD recordings, plus it’s interlaced, not progressive. In addition the inevitable faster shutter speeds mean that you do need plenty of light to get the very best results. I could definitely see a small drop in image quality when shooting at 100 or 120 fps, but the footage is perfectly useable and it is great to be able to slow down motion by 4 or 5 times. You do need to be a little careful if using the interlaced footage within a progressive production as very fast moving objects that travel through the frame may exhibit the combing artefact common in regular interlace material when show progressively. To get the full 5x slow down the camera needs to be set to 60i area to allow the selection of 120fps.

Summary:

The PXW-Z150 is a compact jack of all trades camera that’s easy to work with, has a great zoom range and delivers a respectable looking image. The largeish 1″ sensor gives a greater degree of control over the depth of field than you will have with a camera with a 1/2″ or 1/3″ sensor. But it’s isn’t going to give you that super shallow film look unless you are using longer focal lengths.

I think the Z150 will find a home in many corporate and industrial production applications. The ability to shoot in 4K gives the flexibility to crop int the image to re-frame shots for HD productions. And the price is good too, you get a lot of camera for the money.