More on Adobe’s new color managed workflow.

I’ve written about this before, but the way Adobe have changed the way they manage colourspaces has changed, it hasn’t been well documented, and it’s causing a lot of confusion.

When importing Log footage into the latest versions of Adobe Premiere instead of the log footage looking flat and washed out as it used to, now it looks contrasty and well saturated. If it has been exposed correctly (according to the manufacturers specifications) then it will look like normal Rec-709 footage rather than the flat look that most people associate with log. This is confusing people, many assume Adbe is now adding a LUT to the footage by default, it isn’t. What is happening isd a fundamental change to the way Premiere handles different colorspaces.

NOT ADDING A LUT.

Premiere is NOT adding a LUT. It is transforming between the captured colorspace and the display colorspace so that the footage looks correct with the right contrast, colour and brightness on your display. Your footage remains in its native colorspace at all times (unless you force it into an alternate and possibly wrong colorspace by using the interpret footage function).

Your display could be 709, HDR10, HLG, SGamut3/S-log3 and in each case the footage would, within the limitations of the displays format have the same basic contrast and colour etc, the footage would look the same whether viewing in SDR, HDR or Log because Premiere maps it to the correct levels for the output colorspace you are using to view your content.

OLD BROKEN WORKFLOWS.

The issue is that previously we have been using very broken workflows  that are normally incapable of showing capture colorspaces other than Rec-709 correctly. This has made people believe that log formats are supposed to look flat – They are not! When viewed correctly they should  have the same contrast as 709 etc. Log is not flat, but we have been viewing it incorrectly because most workflows have been incapable of mapping different source colorspaces to our chosen working/viewing colorspace.

LUTs ARE A QUICK FIX – WITH LIMITATIONS.

Up to now to fix these broken workflows we have added LUT’s to convert our beautiful, high dynamic range, vast colorspace source formats into restricted, reduced dynamic range display formats. Once you add that 709 LUT to you S-Log3 footage it is no longer SGamut3/Slog3 it is now Rec-709 with all the restrictions that 709 has such as limited dynamic range, limited colorspace etc and that may limit what you can do with it in the grade. Plus it limits you to only ever outputting in SDR 709.

But what we have now in a colour managed workflow is our big range log being displayed correctly on a 709 display or any other type of display, including HDR or DCI-P3 etc. Because the footage is still in its native colorspace you will have much greater grading latitude, there’s no knee added to the highlights, no shadow roll off, no artificial restriction to the source colorspace. So you can more easily push and pull the material far further during adjustment and grading (raw workflows have always been color managed out of necessity as the raw footage can’t be viewed correctly without first being converted into a viewable colorspace).

HERE’s THE RUB!

But the rub is – you are not now adding someone else’s carefully crafted LUT, which is a combination of creative and artistic corrections that give a pleasing look combined with the Log to Rec 709 conversion.

So – you’re going to have to learn how to grade for yourself – but you will have a much bigger colour and contrast range to work with as your footage will remain in it’s full native capture range.

And – if you need to deliver in multiple formats, which you will need to start doing very soon if you are not already, it is all so much easier as in a colour managed workflow all you do is switch the output format to change from 709 to HDR10 or HLG or DCI-P3 to get whatever format you want without having to re-grade everything or use different LUT’s for each format.

HOW LONG CAN YOU STAY JUST IN REC-709?

And when you consider that almost all new TV’s, the majority of new Phones and Tablets all have HDR screens and this is all now supported on YouTube and Vimeo etc how much longer do you think you will be able to cling on to only delivering in SDR Rec-709 using off-the-shelf SDR LUTs? If you ever want to do stuff for Netflix, Amazon etc you will need to figure out how to work in both SDR and HDR.

IT’S HERE TO STAY

Adobe have done a shockingly bad job of documenting and explaining this new workflow, but it is the future and once you learn how to use it properly it should improve the quality of what you deliver and at the same time expand the range of what you can deliver.

I have to deliver both SDR and HDR for most of my clients and I’ve been using colour managed workflows for around 6 years now (mostly ACES in Resolve). I could not go back to the restrictions of a workflow that doesn’t allow you to output in multiple colorspaces or requires you to perform completely separate grades for SDR and HDR. The great thing about ACES is that it is a standardised and well documented workflow so you can use ACES LUT’s designed for the ACES workflow if you wish. But until Adobe better document their own colour managed workflow it is difficult to design LUT’s for use in the Adobe workflow. Plus LUT’s that work with the Adobe workflow, probably won’t work elsewhere. So – it’s never been a better time to learn how to grade properly or think about what workflow you will use to do your grading.

The bottom line is the days of using LUT’s that add both an artistic look and convert your footage from its source colorspace to a single delivery colorspace are numbered.  Color managed offer far greater flexibility for multi format delivery. Plus they retain the full range and quality of your source material, no matter what colorspace you shot it in or work in.

Tokina 16-28mm t3.0 Cine Zoom Review.

After being lucky enough to have shot with the really rather beautiful looking Tokina Vista prime lenses with Sony’s Venice II (see here), I decided to take a look at the generation 2 Tokina 16-28mm wide angle cine zoom. This lens is available in a variety of mounts including PL, E-Mount and many others and is really very good value for the money.

The lens is parfocal, has minimal breathing and minimal chromatic aberration.  To try it out, I took a PL mount sample  to Windsor to test it out with my FX9 using a Vocas PL E-Mount to PL adapter. 

I often find it difficult to write about lenses because when a lens performs well, there is little to write about without being gushy. The 16-28mm from Tokina does what it should, and it does it well. I didn’t find any particular flaws in the images from the lens and overall, they look really good. At 16mm on a full frame camera the lens gives a very wide field of view with very minimal distortion. It remains sharp into the corners and there is no significant vignetting.

It is well constructed and the 300 (ish) degree of travel focus ring has a very nice weight and feel to it. The zoom ring is a bit heavier but this prevents the zoom moving when you don’t want it to.

A few people have commented about why use a larger bulkier lens like the Tokina over a more compact and lighter photo lens. I think a lot depends on the type of project you are working on. Being realistic, if you are running around on your own, trying to quickly grab footage on a lower budget production then a photo lens with auto focus might be the better option. But when you need maximum control over focus a proper mechanical long travel focus ring is what you want. If you want to zoom during the shot, the lens needs to be parfocal. So for a more controlled shoot, perhaps for drama or other scripted productions a true cine lens like this is often preferable.  so, it’s a case of picking the right lens for the type of production you are shooting. The Tokina 16-28mm t3.0 cine zoom is absolutely worth looking at for any movie style wide angle applications. 

See the video below for some example footage and a closer look at the lens.

 

New SxS/AXS drivers and New Raw Viewer

Over the last few days Sony have been busy releasing new drivers and new software to support not just Venice 2 but also the AXS-R7 and newer AXS-R1 SxS card readers on Apples M1 macs as well as Windows 11.

There is a new and updated version of Sony’s Raw Viewer software that includes support for the 8K Venice 2 files and which runs correctly on Apples newer M1 silicon. This can be downloaded from here: https://www.sonycreativesoftware.com/download/rawviewer

In addition Sony have released a new AXSM utility tool with new drivers for the AR1/AR3 to support the latest cards and formats as well as support for Apple M1 silicon and Windows 11. This is an essential update if you are using these new readers or Venice 2. This can be downloaded from here: https://www.sonycreativesoftware.com/axsmdrive#download

Cine2022 Dubai. A chance to play with a Sony VENICE 2 and the rest of Sony’s Cinema Line.

To celebrate their 20th anniversary Advanced Media of Dubai are holding a special event called Cine2022. This will be the first opportunity to get your hands on and see the beautiful images from Sony’s  Venice 2 in the Middle East. I will be there to talk about the camera and it’s workflow and we will have a Venice 2 for you to play with. So, if you are in Dubai between the 17th and 19th of March 2022, do please come and say hello and ask any questions you may have about any of Sony’s Cinema Line cameras. https://www.amt.tv/all-events/cine2022

A Review of the Tokina Vista Prime Lenses

I was recently given the opportunity shoot some test footage with a Sony Venice II.  A camera like Venice needs good glass, so I put out some feelers to see what lenses I could get for the shoot. I was offered the use of a set of the Tokina Vista primes, lenses I have been wanting to try for some time, so this was the perfect opportunity to try these interesting lenses on Sony’s newest cinema camera.

Shooting at Tower Bridge London with the Tokina Vista 135mm and Venice 2



Lets cut straight to the point: I love these lenses and I loved using them with the Venice 2.

I guess I had some concerns at first over choosing the Tokina Vista’s. Lets face it, Tokina are not the first brand that springs into most peoples minds when you are thinking about high quality PL cinema lenses. But I had been hearing nothing other than good things about them and when I had played with them at a couple of different trade shows, they did always look nice.

There are currently 8 lenses in the Vista range starting at the very wide 18mm and going up to 135mm. All are t1.5, are beautifully constructed with all metal bodies. The focus and aperture rings (with approx 300 degrees of travel) are in the same position on every lens in the set, so lens swaps are easy. The 9 bladed iris works well to give pleasing smooth bokeh.

The Tokina Vista 135mm t1.5 on a Venice 2

 

Many manufacturers claim that their lenses have minimal breathing and this is definitely true of the Tokina Vista. Focussing from near to far resulted in only a very small change of the image size on all the lenses I tried. The breathing is truly minimal.

As I was shooting using the Venice 2’s 8.2K 17:9 mode this was a good test of the lenses resolution and sharpness. In the video at the bottom of the page you will see a couple of shots where I added a slow post production zoom in to the image, reaching 2x magnification. If you watch the video in 4K you won’t see any appreciable drop in image quality during the zoom in where I am in effect expanding the original 8.2K pixel image by 200%. This to me is a clear indication that these lenses are plenty good enough for 8K capture.

Wide shot, taken at 8.2K with the 18mm Tokina Vista.
A crop from the frame above. Even in 4K this image looks great.

 

But, at the same time I also felt that the lenses were not excessively sharp. There is a “roundness” to the images from these lenses that I really like. The Vista’s are also very slightly warm looking and this combined with the roundness of the image and very slight propensity to flare a little gives them a very appealing look. I guess I could describe it as a vintage look, but that might make them sound old fashioned. These are not old fashioned lenses, these are clearly modern, high performance lenses. But the images they deliver has a beautiful, almost old school look that I found to be very appealing.

The Tokina Vistas and Venice 2 deliver great colours and skin tones.
This is a crop from the above image. When you have 8.2K of pixels and a high resolution lens its very easy to reframe in post production, even when delivering in 4K.



Faces and skin tones looked really nice, of course this is a combination of both a great camera and great lenses, but the colour reproduction from the combination of Venice 2 and the Tokina Vistas was very pleasing.

At t1.5 the Tokina Vista’s are great for low light and Venice at 3200 ISO looks great.


I did have a play with most of the lenses in the set and they all appeared to perform similarly. But for the video shoot in London I focussed on the 18mm, 40mm and 135mm lenses. 

The 18mm is very wide. It is not truly rectilinear, there is some barrel distortion, but nothing too severe. You do have to remember that this is a t1.5 lens and it’s not easy to produce very fast, very wide lenses for full frame. The 46.7mm image circle of all the Vista lenses means that they comfortably cover the full frame Venice sensor and even at 18mm there is barely any light fall off or vignetting at the edges of the frame.

One of the other things that really impressed me with all the Vista’s was the lack of chromatic aberration. Even when shooting very high contrast, backlit edges or specular reflections it was hard to spot any chromatic aberration. There is not a single shot amongst all of the material that I shot where I noticed anything nasty.

Trafalgar Square, shot with the 18mm Vista. You can see that there is some barrel distortion, but it’s pretty good for an 18mm t1.5 lens.

 

The only negative I can really find about the 18mm is the size and bulk. This is a big and heavy lens. All the Vista have the same external diameter of 114mm. The 18mm is no different in that regard. But the 18mm is one of the longest lenses in the set, it’s 180mm from front to back. And it weighs almost 2.7Kg. A big part of the weight probably comes from the bulbous front element of the lens – which you will be glad to know does not protrude beyond the end of the lens housing, giving it some protection from accidental damage.

When you have an 8K camera, wide angle lenses can be used to capture a very wide frame that can then be cropped into to re-frame in post, so having that maximum t1.5 aperture which helps maintain a shallow DoF is important. 

London’s China Town, shot with the 40mm Tokina Vista



The 40mm lens is also really nice. 40mm is an interesting focal length, a shade longer than 35mm and wider than 50mm. I found it to be a very nice focal length for a lot of different types of shots with the Venice Full Frame sensor.  At 2.24kg it is a much lighter lens than the 18mm and a fair bit shorter at 160mm. Once again extremely small amount of breathing and near total lack of chromatic aberrations makes this a lovely lens to shoot with. When shooting high contrast point light sources such as street lights at night there is a bit of circular flare around the light source, but I find this to be quite pleasing. Strong light sources just out of frame can lead to some minor veiling flare on all the lenses in the set, but this is no worse than seen with most other similar quality lenses and the lens coatings give the flare a slight warmth that again, I find very appealing.



The 135mm lens doesn’t disappoint either, shooting at 135mm and t1.5 delivers a very narrow depth of field.  As expected this is one of the larger lenses in the set. It’s 187mm long so a bit shorter than the 18mm but it is heavier with the PL mount version coming in very close to 3kg. There isn’t much more I can say about this lens that I haven’t covered with the other lenses, extremely minimal breathing, near zero chromatic aberration etc all make for a great image. The consistent look across all the lenses means this too shares that well rounded not too clinical and very slight warmth that makes these all of these lenses very appealing.

Tokina Vista 40mm on Venice 2 at 3200 ISO. I really like the way the Vistas flare.



The Tokina Vista’s are not re-housed photo lenses, they were designed specifically for digital cinematography. They are available in a range of mounts including PL, Canon EF, MFT, LPL and Sony E. I had heard good things about them from other users before I tried them and now I have had a chance to shoot with them I have to say that they are lenses that I will want to use again. Perhaps in particular when the project would benefit from a slight vintage or romantic look without being soft and without giving up any resolution. For the money they are great looking lenses and would recommend anyone that hasn’t tried them to give them a go.

PAG MPL Mini Pag Link Batteries

I’ve been using PAG batteries forever, well at least for as long as I have worked in film and TV and that’s a very, very long time now. Pag batteries have always been known for their robustness, reliability and performance, all things that are vitally important to me as often I find myself shooting in some very remote and very tough environments.

Shooting with Venice deep in the Slot Canyon powered by a Pag Link PL150 battery.

 

For around 7 years I have been using the Pag Link battery system. Pag link allows you to quickly link together multiple batteries. This has many benefits. For a start you can charge many batteries at once with a single channel battery charger. This is great for me when travelling as I can use the tiny Pag travel charger to charge several batteries overnight. Or back at base with my 2 channel Pag charger I will often put 3 or 4 linked batteries on each charger channel so that all my batteries will charge in one single session. And you are not limited to using a Pag charger, you can stack the Pag Link batteries on almost any charger.

A single Pag PagLink PL150 battery will run Venice for around 2 hours.



Another benefit is being able to link a couple of batteries together when you need a higher current output, perhaps to power a big video light or to run a higher powered digital cinema camera. If using more than one battery on a camera it is even possible to hotswap the rear most battery without needing to turn off the camera or stop recording.

The Pag Link batteries have served me extremely well and even after 6 or more years of use are only showing very minimal capacity loss. But as modern cameras are getting smaller and smaller and need less and less power, even the already relatively compact Pag Link batteries sometimes seemed like overkill.

Enter the MPL series.

The Pag Link MPL batteries have taken what was already a great concept and miniaturised it. Using the latest battery cell technologies Pag have managed to produce new smaller and lighter stackable batteries with the similar capacities to the original Pag Links. Pag have also listened to customer feedback adding D-Tap ports to the tops of the batteries as well as an additional USB output. The USB output module can be swapped to other outputs if you need them such as Hirose or Lemo. In addition, the MPL batteries are fitted with industry standard ¼” mounting points. These can be used to either mount accessories to the battery or to mount the battery on to something that doesn’t have a standard battery connection.

Pag Link Mini MPL99 powering my FX6 while shooting the Volcano in Iceland.



My first real test for the MPL batteries was a trip to Iceland to shoot the Fagradalsfjall Volcano. When travelling by air you must take your Lithium batteries as carry on luggage. The MPL’s are built to very high standards and UN tested, so you can be confident that they are as safe and as flight friendly as possible. The smaller size and light weight makes it nice and easy to travel with these batteries.

 

To get to the Volcano you have to hike up a small mountain using rocky, slippery and sometimes very steep routes. It’s around 2.5 miles from the nearest road to the closest places from where you can see the volcano crater, so a minimum of a 5 mile round trip.  I was working on my own, so had to carry camera, lenses, tripod and batteries in a backpack. Plus spare clothing, food and drinks as the weather in Iceland changes frequently and can often be quite nasty. So, every gram of weight counted. I was shooting with a Sony FX6 using an Atomos Ninja V raw recorder and needed enough power to run everything for a full day of on and off shooting. The Pag MPL’s had just become available and were perfect for the job. The built in D-Taps could be used to power the recorder. I used a V-Mount adapter plate for the camera and the USB port in the MPL batteries was perfect for topping up my phone for the live streams I was doing.

I spent several days up at the Volcano, often hiking even further from the road, seeking out different camera angles and different views. A single 100Wh MPL 99 ran the whole setup for most of the day. By adding an additional 50Wh MPL50 on to the back of the MPL99 I had power in reserve. The diminutive size and light weight of these batteries made a big difference for this shoot. Then back at the hotel I could use the Pag travel charger to charge all of my MPL batteries overnight by connecting them together on the charger, no need to get up in the middle of the night to swap batteries over.

Since then, I’ve used the MPL batteries for many different applications. Their small size is deceptive, they don’t look like they would be able to power anything for a long time, but they can. On a shoot using a Venice 2 I used a stacked MPL99 and an MP50 to power the camera while walking around London to save weight. The batteries ran the camera for close to 2 hours and the capacity display on the battery as well as the run time indicator in the cameras viewfinder was highly accurate.

Pag MPL99 and MPL50 being used to power a Sony Venice II



I can’t recommend the Pag Link system highly enough. The only negative is that the original larger V-Mount Pag Link batteries and the new compact V-Mount Pag Link ML batteries can’t be connected together. A new mating system for V-Mount was require for the new smaller batteries. The Gold mount versions both old and new can be stacked together. Stacked together, despite their diminutive size a pair of MPL99’s can deliver up to 12 amps of power, enough for most video lights. The intelligent linking system means there is no issue connecting a fully charged battery to a flat battery. These are very clever, small, light and compact batteries.

Timecode doesn’t synchronise anything!!!

There seems to be a huge misunderstanding about what timecode is and what timecode can do. I lay most of the blame for this on manufactures that make claims such as “Our Timecode Gadget Will Keep Your Cameras in Sync” or “by connecting our wireless time code device to both your audio recorder and camera everything will remain in perfect sync”. These claims are almost never actually true.

What is “Sync”.

First we have to consider what we mean when we talk about “sync” or synchronisation.  A dictionary definition would be something like “the operation or activity of two or more things at the same time or rate.” For film and video applications if we are talking about 2 cameras they would be said to be in sync when both start recording each frame that they record at exactly the same moment in time and then over any period of time they record exactly the same number of frames, each frame starting and ending at precisely the same moment.

What is “Timecode”.

Next we have to consider what time code is. Timecode is a numerical value that is attached to each frame of a video or an audio recording in an audio device to give it a time value in hours, minutes, seconds, frames. It is used to identify individual frames and each frame must have a unique numerical value. Each individual successive frames timecode value MUST be “1” greater than the frame before (I’m ignoring drop frame for the sake of clarity here). A normal timecode stream does not feature any form of sync pulse or sync control, it is just a number value.

Controlling the “Frame Rate”.


And now we have to consider what controls the frame rate that a camera or recorder records at. The frame rate the camera records at is governed by the cameras internal sync or frame clock. This is normally a  circuit controlled by a crystal oscillator. It’s worth noting that these circuits can be affected by heat and at different temperatures there may be very slight variations in the frequency of the sync clock. Also this clock starts when you turn the camera on, so the exact starting moment of the sync clock depends on the exact moment the camera is switched on. If you were to randomly turn on a bunch of cameras their sync clocks would all be running out of sync. Even if you could press the record button on each camera at exactly the same moment, each would start recording the first frame at a very slightly different moment in time depending on where in the frame rate cycle the sync clock of each camera is. In higher end cameras there is often a way to externally control the sync clock via an input called “Genlock”.  Applying a synchronisation signal to the cameras Genlock input will pull the cameras sync clock into precise sync with the sync signal and then hold it in sync. 

And the issue is………..

Timecode doesn’t perform a sync function. To SYNCHRONISE two cameras or a camera and audio recorder you need a genlock sync signal and timecode isn’t a sync signal, timecode is just a frame count  number. So timecode cannot synchronise 2 devices. The camera’s sync/frame clock might be running at a very slightly different frame rate to the clock of the source of the time code. When feeding timecode to a camera the camera might already be part way through a frame when the timecode value for that frame arrives, making it too late to be added, so there will be an unavoidable offset. Across multiple cameras this offset will vary, so it is completely normal to have a +/- 2 frame (sometimes more) offset amongst several cameras at the start of each recording.

And once you start to record the problems can get even worse…

If the camera’s frame clock is running slightly faster than the clock of the TC source then perhaps the camera might record 500 frames but only receive 498 timecode values – So what happens for the 2 extra frames the camera records in this time? The answer is the camera will give each frame in the sequence a unique numerical value that increments by 1, so the extra frames will have the necessary 2 additional TC values. And as a result the TC in the camera at the end of the clip will be an additional 2 frames different to that of the TC source. The TC from the source and the TC from the camera won’t exactly match, they won’t be in sync or “two or more things at the same time or rate”, they will be different.

The longer the clip that you record, the greater these errors become as the camera and TC source drift further apart.

Before you press record on the camera, the cameras TC clock will follow the external TC input. But as soon as you press record, every recorded  frame MUST have a unique new numerical value 1 greater than the previous frame, regardless of what value is on the external TC input. So the cameras TC clock will count the frames recorded. And the number of frames recorded is governed by the camera sync/frame clock, NOT the external TC.  

So in reality the ONLY way to truly synchronise the timecode across multiple cameras or audio devices is to use a sync clock connected to the  GENLOCK input of each device.

Connecting an external TC source to a cameras TC input is likely to  result in much closer TC values for both the audio recorder and camera(s) than no connection at all. But don’t be surprised if you see small 1 or 2 frame errors at the start of clips due to the exact timing of when the TC number arrives at the camera relative to when the camera starts to record the first frame and then possibly much larger errors at the ends of clips, these errors are expected and normal. If you can’t genlock everything with a proper sync signal, a better way to do it is to use the camera as the TC source and feed the TC from the camera to the audio recorder. Audio recorders don’t record in frames, they just lay the TC values alongside the audio. As an audio recorder doesn’t need to count frames the TC values will always be in the right place in the audio file to match the cameras TC frame count. 

CineEI is not the same as conventional shooting.

CineEI is different to conventional Shooting and you will need to think differently.

Shooting using CineEI is a very different process to conventional shooting. The first thing to understand about CineEI and Log is that the number one objective is to get the best possible image quality with the greatest possible dynamic range and this can only be achieved by recording at the cameras base sensitivity. If you add in camera gain you add noise and reduce the dynamic range that can be recorded, so ideally you always need to record at the cameras base sensitivity for the best possible captured image.

Sony call their system CineEI. On an Arri camera the only way to shoot log or raw is using Exposure Indexes and it’s the same with Red, Canon and almost every other digital cinema camera when shooting log. You always record at the cameras base sensitivity because this will deliver the greatest dynamic range.

Post Production.

A key part of any log workflow is the post production. Without a really good post production workflow you will never see the best possible results from shooting Log. An important part of the post production workflow will be correcting for any exposure offsets used when shooting. If something has been exposed very brightly, then in post you will bring that exposure down to a normal level. Bringing the levels down in post will decrease noise. The flip side to this is that if the exposure is very dark then you will need to raise the levels in post and this will make then more noisy

Exposure and Light Levels.

It is assumed that when using CineEI and shooting with log that you will control the light levels in your shots and use levels suitable for the recording ISO (base ISO) of the camera using combinations of aperture, ND and shutter speed, again it’s all about getting the best possible image quality. If lighting a scene you will light for the base ISO of the camera you are using.

Here’s the bit that’s different:

Changing the EI (Exposure Index) allows you to tailor where the middle of your exposure range is. It allows you to alter the balance between more highlight range with less shadows or less highlight range with more shadow information in the captured image. On a bright high contrast exterior you might want more highlight range, while for a dark moody night scene you might want more shadow range. Exposing brighter puts more light on to the sensor. More light on the sensor will extend the shadow range but decrease the highlight range. Exposing darker will decrease the shadow range but also allow brighter highlights to be captured without clipping. 

IMPORTANT:   EI is NOT the same as ISO.

ISO is a measure of a film stock or camera sensors SENSITIVITY to light. It is the measure of how strongly the cameras sensor responds to light.

Exposure Index is a camera setting that determines how bright the image will become for a given EXPOSURE. While it is related to sensitivity it is NOT the same thing and should always be kept distinct from sensitivity.

ISO= Sensitivity and a measure of the sensors response to light.

EI = Exposure Index – how bright the image seen in the viewfinder will be.

The important bit to understand is that EI is an exposure rating, not a sensitivity rating. The EI is the number you would put into a light meter for the optimum EXPOSURE for the type of scene you are shooting. The EI that you use depends on your desired shadow and highlight ranges as well as how much noise you feel is acceptable. 

What Actually happens when I change the EI value on a Sony camera?

On a Sony camera the only things that change when you alter the EI value are the brightness of any Look Up Tables (LUTs) being used, the EI value indicated in the viewfinder and the EI value recorded in the metadata that is attached to your clip.

Importantly – To actually see a change in the viewfinder image or the image on an external monitor you must be viewing your images via a LUT as the EI changes the LUT brightness, changing the EI does not on it’s own change the  way the S-Log3 is recorded or the sensitivity of the camera. If you are not viewing via a LUT you won’t see any changes when you change the EI values, so for CineEI to work, you must be monitoring via a LUT.

Raising and Lowering the EI value:

When you raise the EI value the LUT will become brighter. When you lower the EI value the LUT will become darker.

If we were to take a camera with a base ISO of 800 then a nominal  “normal” exposure would result from using 800 EI. When the base ISO value and the EI value are matched, then we can expect to get a “normal” exposure.

The S-Log3 levels that you will get when exposed correctly and the EI value matches the cameras base ISO value. Note you will have 6 stops of range above middle grey and 8+ stops below middle grey.

 

Let’s now look at what happens when we use EI values higher or lower than the base ISO value.

(Note: One extra stop of exposure is the equivalent of doubling the ISO or EI. One less stop of exposure is the equivalent of halving the ISO or EI. So if double 800 EI so you get to 1600 EI this would be considered 1 stop higher. If you double 1600 EI so you are at 3200 EI this is one further stop higher. So 800 EI to 3200 EI is 2 stops higher)

If you were to use a higher EI, let’s say 3200 EI, two stops higher than the base 800 EI, then the LUT will become 2 stops brighter.

If you were using a light meter you would enter 3200  into the light meter. 

When looking at this now 2 stops brighter viewfinder image you would be inclined to close the aperture by 2 stops (or add ND/shorter shutter) to bring the brightness of the viewfinder image back to normal. The light meter would also recommend an exposure that is 2 stops darker.



Because the recording sensitivity or base ISO remains the same no matter what the EI, the fact that you have reduced your exposure by 2 stops means that the sensor is now receiving 2 stops less light, however the recording sensitivity  has not changed. 

Shooting like this, using a higher EI than the base ISO will result in less light hitting the sensor which will result in images with less shadow range and more noise but at the same time a greater highlight range.

The S-Log3 levels that you will get when the EI value is 2 stops higher than the cameras base ISO value and you have exposed 2 stops darker to compensate for the brighter viewfinder image. Note how you now have 8 stops above middle grey and 6+ stops below. The final image will also have more noise.

 

A very important thing to consider here is that this is not what you normally want when shooting darker scenes, you normally want less noise, more shadow range. So with CineEI, you would normally try to shoot a darker, moody scene with an EI lower than the base ISO.

In this chart we can see how at 800 EI there is 6 stops of over exposure range and 9 stops of under. At 1600 EI there will be 7 stops of over range and 8 stops of under and the image will also be twice as noisy. At 400 EI there are 5 stops over and 10 stops under and the noise will be halved.



This goes completely against most peoples conventional exposure thinking.

For a darker scene or a scene with large shadow areas you actually want to use a low EI value. So if the base ISO is 800 then you might want to consider using 400 EI. 400 EI will make the LUT 1 stop darker. Enter 400 EI into a light meter and compared to 800 the light meter will recommend an exposure that is 1 stop brighter. When seeing an image in the viewfinder that is 1 stop darker you will be inclined to open the aperture or reduce the ND to bring the brightness back to a normal level. 

This now brighter exposure means you are putting more light on to the sensor, more light on the sensor means less noise in the final image and an increased shadow range. But, that comes at the loss of some of the highlight range.

The S-Log3 levels that you will get when the EI value is 2 stops lower than the cameras base ISO value and you have exposed more brightly to compensate for the darker viewfinder image. Note how you now have 4 stops above middle grey and 10+ stops below. The final image will have less noise.

 

Need to think differently.

The CineEI mode and log are not the same as conventional “what you see is what you get” shooting methods. CineEI requires a completely different approach if you really want to achieve the best possible results.

If you find the images are too dark when the EI value matches the recording base ISO, then you need to open the aperture, add light or use a faster lens. Raising the EI to compensate for a dark scene is likely to create more problems than it will fix. It might brighten the image in the viewfinder, making you think all is OK, but on your small viewfinder screen you won’t see the extra noise and grain that will be in the final images once you have raised your levels in post production. Using a higher EI and not paying attention could result in you stopping down a touch to protect some blown out highlight or to tweak the exposure when this is probably the last thing you actually want to do.

I’ve lost count of the number of times I have seen people cranking up the EI to a high value thinking this is how you should shoot a darker scene only to discover they can’t then make it look good in post production. The CineEI mode on these cameras is deliberately kept separate from the conventional “custom” or “SDR” mode to help people understand that this is something different. And it really does need to be treated differently and you really do need to re-learn how you think about exposure. 

For dark scenes you almost never want to use an EI value higher than the base ISO value and often it is better it use a lower EI value as this will help ensure you expose any shadow areas sufficiently brightly.

The CineEI mode in some regards emulates how you would shoot with a film camera. You have a single film stock with a fixed sensitivity (the base ISO). Then you have the option to expose that stock brighter (using a lower EI) for less grain, more shadow detail, less highlight range or expose darker (using a higher EI) more grain, less shadow detail, more highlight range. Just as you would do with a film camera.

Sony’s CineEI mode is not significantly different from the way you shoot log or raw with an Arri camera. Nor is it significantly different to how you shoot raw on a Red camera – the camera shoots at a fixed sensitivity and any changes to the ISO value you make in camera are only actually changing the monitoring brightness and the clips metadata.

Exposing more brightly on purpose to achieve a better end result is not “over exposure”. It is simply brighter exposure. Over exposure is generally considered to be a mistake or undesirable, but exposing more brightly on purpose is not a mistake.

FX9 Guide: Videos And PDF Updated For Version 3

The FX9 Guide series of videos and the downloadable and searchable PDF guide that I created for Sony’s PXW-FX9 camera have been updated to cover the new features in the version 3 firmware. 

There are 6 new videos including a short film called “I-Spy” that makes use of almost all of the new features.

The full set of FX9 guide videos can be found here on the Sony website: 

https://pro.sony/en_GB/filmmaking/filmmaking-tips/pxw-fx9-tutorial-videos-introduction

If you are unable to access the videos via the link above they can also be found on YouTube on the Sony Camera Channel:

https://www.youtube.com/c/ImagingbySony

Below is the “I-Spy” short film that I made to generate the sample material needed for the tutorial videos. Every shot in I-Spy uses at least 1 of the new features included in the version 3 update.

 

Real Time Northern Lights, Shot with The FX3

I’ve just got back from my latest Northern Lights expedition to Norway and thought I would share some real time footage of the Northern Lights shot with the Sony FX3 and a Sony 24mm f1.4 GM lens. The 24mm f1.4 is a lovely lens and brilliant for shooting star fields etc as it is pin sharp right into the corners. It also has near zero comma distortion so stars remain nice and round. 
It was -27c when this was shot and my tripods fluid head was starting to get very stiff, so that’s my excuse for the bumps on a couple of the camera moves. 
What you see in this video is pretty much exactly as it appeared to my own eyes. This is not time-lapse and the colours while slightly boosted are as they really are. 
I shot using a range of ISO’s using S-Log3. Starting at 12,800 ISO but going all the way up to 128000 ISO. I perhaps didn’t need to go that high as the Aurora was pretty bright but when an Aurora like this may only last a few minutes you don’t want to stop and change your settings unless you have to for fear of missing something. The low light performance of the FX3 really is quite phenomenal.

Anyway, I hope you enjoy the video.